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Preface

What Is This Book About?

This book teaches the reader how the key components of any computer - the
processor and memory - actually work. This core topic of computing is known
as computer architecture and organization.

� Computer architecture describes the properties of the computer as viewed
from the perspective of the programmer;

� Computer organization describes the internal properties of the computer
as viewed from the perspective of the hardware engineer.

The book is aimed at all first-year undergraduates taking a computer
architecture and organization module. Such a course is normally compul-
sory on computing degrees, software engineering degrees and HN computing
courses. Additionally, many electronic engineering undergraduate courses
have similar modules in their first year. It will also be useful to those study-
ing a taught conversion Masters in computing, as well as further reading for
’A’ level computing students.

Many undergraduates find the topic of computer architecture immensely chal-
lenging - this book, through many examples throughout the text and the use of
simulation software, leads the student to a successful completion of their first
computer architecture course.

To meet this essential aim the text is based around a software simulation of a
simple processor. By using a simplified processor the student gains an under-
standing of the fundamental concepts of computer systems architecture and
organization, upon which he or she can subsequently build to understand the
more advanced facilities and techniques employed by modern day processors.

xv



www.manaraa.com

Fundamentals of Computer Architecture

Note For Lecturers

This book is intended to be the primary text for a first computer architecture
course - PDF slides for each chapter are available from the book website
(details are within this preface).

The book can be used in a number of ways, to suit the wide range of computer
architecture syllabi.

� It can be used as sole material for a 24 lecture course;

� It can be used in conjunction with other materials in order to best fulfil
your own unique syllabus, in order to give flexibility for either a 12 or a
24 lecture course. Each syllabus for a computer architecture course is
slightly different, so it is expected that you will select the particular chap-
ters that your syllabus concentrates on, using further material to expand
your appropriate areas of interest.

The exercises at the end of chapters can be used as either seminar or home-
work materials as required. All solutions are available to lecturers from the
website listed later.

It is worth noting that the student is expected to have little or no programming
knowledge prior to studying this text. However, although programming con-
cepts are introduced, it is expected that the student will at least be undertaking
a programming course concurrently while studying this material.

How Is The Book Organized?

This book consists of four key parts, together with a number of appendices.
The main parts are: -

The building blocks - which contains chapters on designing a simple proces-
sor, fundamental concepts, registers, buses, memory, the ALU, and how
our processor runs stored programs;

Using the processor - which contains chapters on writing structured pro-
grams, stacks and writing subroutines, addressing modes, memory-
mapped I/O, interrupts and systems software;

Under the bonnet - which contains chapters on micro-instructions, building
an instruction set, and the control unit;

The real world - which closes with chapters on advanced features found in
microprocessors in the wild.

Each section consists of a number of chapters - the largest sections being the
first two. Each chapter consists of the same sub-divisions. These are:

xvi
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� An overview;

� The main body of the chapter (using practical examples, either programs
for a simulated processor called JASP or circuit designs for a circuit
simulation tool called Digital Works);

� A summary;

� Where appropriate, a set of self test questions - answers are in appendix
G;

� Where appropriate, a set of further exercises to aid the learning process.

The contents of each section and the chapters within it are given below.

Part 1 - The Building Blocks

We look at the processor from the viewpoint of the hardware engineer. This
part establishes the key concepts and introduces a simple processor, focusing
on how it can be built from relatively basic elements (registers, an ALU, a
control unit, and buses to interconnect them). We then discuss how these
elements, in conjunction with a memory, form a basic computer system.

Part 2 - Using The Processor

We look at the processor from the point of view of the programmer. This
part establishes the practical usability of such a processor, starting with sim-
ple programs and building up to using memory-mapped I/O and interrupts.
Additionally, tools that can be used to aid program development are discussed.

Part 3 - Under The Bonnet

After looking at the processor from the programmer’s perspective it is now
time to return to the viewpoint of the hardware engineer to examine the fetch-
execute cycle in more depth. We discuss how we can extend our instruction
set to provide further functionality and then finally, we look at how we could
extend the hardware of our processor to give yet more functionality.

Part 4 - The Real World

In this final part we take a look at the features of real processors and point
out the similarities they share with our simple processor - and hence come
full circle by showing the relevance, simplicity and practicality of our simple
processor as a basis for understanding modern processors.

xvii



www.manaraa.com

Fundamentals of Computer Architecture

Appendices

The appendices contain reference material for the JASP processor and its
instruction sets as well as a brief introduction to the Digital Works package.

Software

The software packages distributed with this text are the JASP toolkit and
Digital Works. Each is detailed below.

The JASP Toolkit

The JASP toolkit is based around the design of a simple processor named
JASP - Just Another Simulated Processor.

The main tool is JASPer (Just Another Simulated Processor emulator ) - a
simulated processor used throughout this text.

The set of tools include:

� JASPer - the simulated processor;

� Aspen - a command-line version of JASPer that can be used with DOS or
Linux;

� The JASP C−− Cross-compiler - a cross-compiler for the JASP architec-
ture;

� The JASP Cross-assembler - a cross-assembler, written in Perl, that
assembles programs for the JASP architecture;

� The basic and advanced JASP instruction sets;

� Two software libraries, for use with each instruction set.

Most screen shots of JASPer within this text make use of a simple graphic
display to better show the functionality of the processor.

All the tools within the JASP toolkit are copyright Mark Burrell, except for the
C−− cross-compiler which is copyright David Harrison.

Digital Works

The Digital Works package is copyright Mechanique and is distributed by
Matrix Multimedia Ltd.

Their website is http://www.matrixmultimedia.co.uk
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What Is On The Accompanying CD?

On the accompanying CD you will find:

� The JASP toolkit;

� The Digital Works package (30 day license);

� All example programs;

� All example circuit diagrams;

Is There A Website?

Yes. It’s here:

http://www.palgrave.com/science/computing/burrell/

On the site you’ll find such useful materials as:

� The latest copy of the JASP toolkit;

� A link to the Digital Works website;

� Further exercises;

� Lecturers’ materials including answers to exercises and PDF slides for
each chapter;

� Errata for this text.

About The Author

Mark is a Principal Lecturer within the School of Informatics at Northumbria
University located in the North-East of England. He has taught computing
fundamentals for many years and his package JASPer has been used as a
teaching aid in this area since 1995.

Mark has held a UK Private Pilot’s License since 1995, although he doesn’t
get time to use it these days - instead he currently get his kicks by riding fast
motorcycles.
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Part I

The Building Blocks

In this section we look at the processor from the
viewpoint of the hardware engineer.

1
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Introducing The
Processor

CHAPTER OVERVIEW

In this chapter we describe the fundamental features of a computer
system and focus on the use of the processor.

This chapter includes:

� The key aspects of a computer;

� A brief history of the computer and its place within our modern
society;

� The typical components within a computer system, focusing on
the processor;

� The simulated processor, JASPer - the primary tool with which
we are going to study the fundamental concepts of modern
computers.

1.1 Computers Are Everywhere

You’ve seen a computer before - they are in almost every office, every shop,
every school classroom and many private homes - if you closed your eyes right
now you could picture a computer. When many people think of a computer they
think of the typical desktop PC, or laptop, or even the PDA (all shown in figure
1.1). Within this chapter I’ll show you that computers come in more guises
than these, and yet they all contain the same fundamental components.

Before we open up a computer and take a peek inside, the first thing we should
do is throw away all our current conceptions (and misconceptions) of what we

3
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think a computer is, and try to answer the question - what is a computer? It
isn’t as simple as you might first think - in fact, before you read any further,
try writing down five points that you think describe what a computer is, I’ll give
you my five points shortly.

Figure 1.1 The more visible computers - a PC, a laptop and a PDA

A hundred years ago a computer was a human being, either a mathematician
or someone who worked for a mathematician. A computer was someone who
performed calculations to find the answer to a complex mathematical equation.
They might not have even understood the calculations they were performing (in
fact, it was often found that those individuals who didn’t understand the com-
plex calculations actually performed better. Why? Because they wouldn’t be
tempted to perform short cuts on their set of operations, which could actually
introduce errors into the calculations). A good computer simply followed very
stringent rules. Often, a calculation might be performed by a set of computers
(people) in a room - in that case a particular set of rules for one individual
computer in the room might have been something like:

� Take the card from the person on your left;

� Multiply the last number on the card by three;

� Write the result on the card;

� Hand the card to the person on your right;

� Repeat all operations again.

4
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Human computers like this were used as late as the 1940s. Richard Feynman
(a physicist who would later win a Nobel prize) used his team of people in this
way to perform key calculations for the American atomic bomb programme.

It wasn’t until the early 1940s that electrical devices were first referred to (most

NOTES
Richard P. Feynman was
an extraordinarily gifted
scientist, as well as an
extraordinary person. His
claims to fame (Nobel
prize apart!) included
safecracking, the ability to
control his dreams, and
deducing the reasons
behind the space shuttle
Challenger accident. I
heartily recommend two of
his books ([Fey86, Fey87])
- they are not only incisive
and gripping but they are
also amazingly funny.
Additionally, The Feynman
view of computing is
available in [Fey99].

probably by an American called Atanasoff) as computers, and over the years
the rough definition of a computer has evolved to this:

� It must take input of some sort;

� It must produce output of some sort;

� It must process the information somehow;

� It must have some sort of information store;

� It must have some way of controlling what it does.

I bet my set of points differ from yours.

So, a computer is a device that meets the above five constraints - and even
though we don’t yet fully know what these points mean (we’ll cover each point
in more detail soon) - please note that being able to run a word processor, or a
spreadsheet, or play MP3 sound files are most definitely not in our definition!

At the heart of any computer you will find a component called a processor,
more formally described as a Central Processing Unit, or CPU. A proces-
sor that is constructed completely as a very large electrical circuit - called an
integrated circuit - on one single chip of silicon (colloquially called a com-
puter chip) is called a microprocessor . What we term a computer these
days is more accurately called a microprocessor based computer system or
micro-computer .

Here, at the beginning of the twenty-first century, microprocessors pervade
our society. Every day you may use anything up to a couple of hundred mi-
croprocessors, and most of the time you aren’t even aware of them. They are
in everything from your mobile phone to your microwave. They are in most
modern cars, controlling everything from the windscreen wipers and electric
windows to the engine management system that ensures the optimal perfor-
mance of the engine. In our modern world most microprocessors no longer
come in large rectangular boxes - the conventional guise of a modern personal
computer.

NOTES
Throughout this book I
focus on the logical usage
of a processor - so, as the
only major difference
between a microprocessor
and a processor is how
they are physically
constructed, I tend to treat
the terms ‘processor’ and
‘microprocessor’
synonymously.

It used to be said that any electronic device worth over 100 Euros had a mi-
croprocessor in it - but microprocessors can now be built so cheaply that the
cost of an electronic device no longer gives an indication as to whether the
device contains a microprocessor or not.

It is these microprocessors used within embedded systems (contained in
some greater device, like a car or a mobile phone - such that the micropro-

NOTES
Modern cars easily contain
50 or more processors,
and this number is rising.

cessor is part of the greater device) that are becoming the largest market
within computing. Never has there been a better time to gain a fundamental

5
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knowledge of how microprocessors work, as this knowledge is increasingly in
demand now that microprocessors are truly everywhere.

1.2 A Very Brief History Of The Computer

1.2.1 Babbage And His Difference Engine

Let’s take a step back and move on to a further question - who invented the
computer? This depends on which history books you read and indeed, which
court judgements you believe (this question has even been ruled on by a judge
before now, as I will mention shortly). The truth is that key elements of the
computer were invented by a number of people, some of these people have
since been given credit, while others have gone relatively unsung.

The birth of computers can be traced back to the mid nineteenth century when
an Englishman called Charles Babbage invented mechanical machines, using
features of earlier mechanical machines, called the Difference Engine and the
Analytical Engine. The latter was never completed as Babbage’s main investor
(the British government) eventually withdrew his funding - he was not to be
the last hardware engineer to overstep his budget! Many features of a modern
computer are based on ideas first formulated by Babbage - he is considered
by many to have been a century ahead of his time.

1.2.2 Turing And His Machine

It took many decades before others would carry on the work started by Bab-
bage. Alan Turing, a leading mathematician in the twentieth century, wrote a
defining paper in 1936 called ‘On Computable Numbers, With An Application
To The Entscheidungsproblem’[Tur36] where he solved a famous mathemat-
ical problem by defining a concept he called a Turing Machine - the practical
grounding for computing machines. Turing would make a major impact in com-
puting during World War II when he developed electronic machines to break
the German Enigma codes. Wartime generated massive development of the
early computing devices, mostly by the Allies in the United Kingdom and in the
United States.

NOTES
Andrew Hodges wrote an
excellent biography of Alan
Turing [Hod92].

In the United Kingdom, electronic devices of increasing complexity were used
at Bletchley Park (home to the UK’s Code and Cipher School - later to become
famous as ‘Station X’) to attempt to break the German wartime codes, of which
the most complex were the codes produced by the Enigma machine - a part
mechanical, part electronic, cipher machine. The Enigma machine was used
throughout the German military, and so cracking the Enigma could provide
the Allies with information to change the course of the war. Turing, using the

6
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ideas he first developed in the 1930s, designed machines to decipher Enigma
encryption.

NOTES
[Aga01] describes the
early developments of the
computer.

Station X was also the birthplace of a machine called Colossus. Colossus was
effectively the first programmable logic calculator.

In the United States too, many organizations were attempting to build the first
electronic computers, to aid the war effort. These included Howard Aiken’s
Harvard Mark 1, and ENIAC, built by John Mauchly and J. Presper Eckert.
ENIAC arrived too late to help in the war effort but was later used to test key
calculations for the atomic bomb programme. It was Mauchly and Eckert who
later attempted to use the courts to claim the patent for the digital computer
as their own; after many years their claim was thrown out.

1.2.3 The Birth Of The Von Neumann Architecture

NOTES
The life of John von
Neumann is described in
[Pou92]. von Neumann
compares the computer
with the brain in [vN00].

After the war many organizations around the World joined in the efforts to pro-
duce electronic computers. One worthy of note was known as the Manchester
‘Baby’, built at Manchester University - it was the first computer that stored its
programs and its data in the same memory - an idea that is used by almost all
modern computers today; it’s referred to now as a von Neumann architecture,
named after the famous Hungarian born mathematician John von Neumann.
John von Neumann was the author of a key report produced in 1945 that laid
down the structure of a stored program computer that used binary arithmetic.

1.2.4 The Pace Of Development

Rather than mention every key development since the 1940s, let’s just look
at some key moments in computing history since then. The invention of the
transistor in 1947 is one of those moments, it signalled the start of much more

DEFINITION
Transistor : A transistor is
an electronic device that
can be thought of as an
electronic switch. They can
be combined to build
special circuits called logic
gates, and we will examine
these in chapter 3.

reliable hardware, as earlier vacuum tube technology was very unreliable.

In 1958 the invention of the integrated circuit changed the world - it meant that
it was now much easier to build more complex devices. As the 1960s went by,
more and more electronics could be packed into integrated circuits and in 1971
a young company called Intel produced the very first microprocessor. It was
called the Intel 4004 and contained around 2300 transistors on a single chip
- this was the chip that dawned the microcomputer revolution. The grandchild
of this chip would be at the heart of the first IBM PCs that began shipping in

DEFINITION
Integrated Circuit : A
circuit formed completely
on a single piece of silicon
- colloquially known as a
chip.

1981. The technology to build integrated circuits is now so advanced that we
are close to having one billion transistors on a single chip.

Developments in computing have been divided retrospectively into separate
ages based on the key technologies used; these boundaries can also be
shown to have a relationship with the developments in programming. No one

7
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quite agrees on the boundaries of these ages, as in reality they have over-
lapped quite significantly. Table 1.1 shows the most often quoted dates for
each age. Some people argue that we are now in the fifth age of computing,
but this is disputed by others as the fourth age technology (VLSI) is still being
used, albeit at an extremely high level of integration.

Throughout this book we will focus on the usage of computing devices,
individual technologies won’t be discussed any further.

DEFINITION
LSI : Large Scale
Integration - 1,000 or more
transistors on a single chip.

Age Time Period Technology Used
0th. pre 1943-5 Mechanical devices
1st. 1943-5 — 1955-9 Vacuum tubes
2nd. 1955-9 — 1964-5 The use of transistors and

printed circuits
3rd. 1964-5 — 1972-80 The rise of the integrated

circuit
4th. 1972-80 — present LSI and VLSI

Table 1.1 The ages of computing - based on technology usedDEFINITION
VLSI : Very Large Scale
Integration - 10,000 or
more transistors on a
single chip.

1.3 Inside A Computer

Now it’s time for us to take a peek inside a modern computer to see what’s in-
side. In figure 1.2 I’ve taken the case off a typical PC, and as you can see, even
with many of the internal cables removed, it looks complicated and it’s pretty

DEFINITION
Program : A precise set of
instructions that controls a
processor. hard to see exactly what is in there, but the main parts have been labelled.

� The most important component is the processor. Throughout this book
we will focus on the processor - it runs a series of instructions (called
a program), and controls the activity of all other components within the
computer;

� Next we have the memory chips. These are used to store our data and
instructions - there are different types of memory chips, and they are
discussed in more detail in chapter 7;

DEFINITION
Memory : Where we store
our programs and our
data. Memory can be built
in a number of different
ways - we’ll cover this in
chapter 7.

� The other labelled components include the hard disk, the graphics card,
network card and the power supply. All are used by modern computer
systems, but are actually quite minor in the scale of things - we don’t need
to refer to them to learn how a computer works.

What does the processor do? Essentially it is the core of the computer - ev-
erything else just helps it to do its job. Its job is to take information and follow
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strict rules (the program) to produce output. What does that mean? Let us
look at an example - when you use an ATM to get money out of your bank
account you are using a computer with a processor at its centre. You give the
ATM information, both from your bank card (which contains your bank details
on a magnetic strip) and by hand (as you type in your secret key number and
also enter how much money you want to withdraw).

Figure 1.2 The innards of a typical personal computer today

The ATM uses that information to talk to other computers (which contain your
current bank balance) to find out if you can have the money or not. Once the
ATM has done that it presents information (using a display screen) about your
account and dispenses your money. An ATM fulfills all the rules we saw before
that described a computer.

� It must take input of some sort - the ATM takes your bank details from your
bank card and information from the keypad detailing how much money you
require;

DEFINITION
PC : Personal Computer -
a desktop machine usually
used by one person at a
time. Although other
companies produced
personal computers before
them, it was IBM that
cornered the market. IBM
first produced their PCs in
1981.

� It must produce output of some sort - the ATM drives a screen display and
also controls a set of motors that are used to dispense cash;

� It must process the information somehow - the ATM uses information in its
information store, together with the details you have given it and - following
precise rules - it figures out if you can have the cash you require or not;

� It must have some sort of information store - the ATM gathers information
on your bank details from another computer and stores this locally - it is
this information it uses to process your requirements;

9
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� It must have some way of controlling what it does - the ATM can change
what it does - if your account is in credit, you can have money; if it’s in
debit, you can’t.

It is the processor that takes the information given to it, processes that
information and produces some form of output.

1.4 The Minimalist Approach
NOTES

[Lev94] gives an
interesting look into the
world of the computing
industry in the 1970s and
1980s.

As we saw when looking into the case of a typical PC, a computer can look
pretty complicated. So instead, we will spend our time looking at something
simpler - something that has all the key features of a modern computer, but
without all the complexities of the system we can see in figure 1.2. Once we
manage to understand our simpler computer, we can scale back up to the
complex computer systems that we see around us everyday.

What are the smallest number of components we need to build a computer?
We need:

� A processor - to process information, and to control the system;

� Memory - for data and instruction storage;

� Some form of input device; we’ll use a keyboard to enter data into the
system;

� Some form of output device; we’ll use a monitor screen so we can see
what our computer is doing.

Using just these components we can build a computer that meets our five
constraints and can show us all the concepts we need to understand to allow
us to understand how most modern computers work.

Additionally, both the input device and the output device can be integrated into
the memory - we will see how in chapter 12. We connect the processor and
the memory together using special sets of wires called buses - buses allow us
to send data from one component to another.

Our minimalist system is shown in figure 1.3.

10
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Buses

Output

MemoryProcessor

Input

Figure 1.3 Our minimalist computer system

1.4.1 Inside The Processor

It is now time to look inside the processor of our minimalist computer system.
Using the same philosophy as before, this processor needs only the bare min-
imum in order to work - we are not concerning ourselves with all the additional
complexities used by modern processors.

To build our simple processor we need the following components:

� Some Registers - a register is a store where we can place one piece of
data;

� An Arithmetic Logic Unit, or ALU - a very basic calculator for our pro-
cessor. The ALU will have some registers inside it, as we will see
later;

� A Control Unit, or CU - to run the processor;

� Some buses - to allow us to move data from one component to another.

These components can be seen in figure 1.4.

You can see that our processor uses 12 registers, a bus to connect them, an
ALU and a CU. Even with so few components, our processor can actually do
quite complex tasks, as we will see shortly.

11
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ALU
Control
Unit

= Register = Bus

Processor

Figure 1.4 Our minimalist processor

1.4.2 Here’s One We Prepared Earlier

In future chapters we will look at the different components that make up our
simple processor, but in the meanwhile it is time to introduce a software pack-
age that we will make use of throughout this text. The package is called
JASPer , short for Just Another Simulated Processor emulator, and it simulates
the simple processor design from figure 1.4. When we first start up JASPer we
see a more detailed view of our processor, as shown in figure 1.5.

JASPer shows a stylized view of the processor as a set of components placed
on a motherboard, a circuit board that connects all the key components of a
computer. This view of JASPer is called the white-box mode - you can see
inside the processor itself. Later we will introduce the black-box mode where

12
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instead of seeing inside the processor we see a display screen that shows the
textual output of programs - we’ll see this in a moment.

Figure 1.5 Introducing JASPer - our simple processor

1.4.3 Our First Program - ‘Hello World’

Without needing to look at details as to what it is doing, we can demonstrate
this simple processor by running our first program on it.

Normally, when learning any new programming language, it is traditional that

DEFINITION
White-box : We see inside
our processor. the very first program attempted is the ‘Hello World’ program. This is usually

one of the simplest programs you could write in your new language - this
statement is not true when writing our first program for JASPer! However, it is
important that we attempt to run our first program to see the sort of things that
our simple processor design can do.

Here is what to do:
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1 The program we want to run is stored on the CD that accompanies thisDEFINITION
Black-box : We treat our
processor as a
component.

book. On the CD, the ‘Hello World’ program is stored in the location:

\examples\chapter01\hello.jas

NOTES
The JASPer button bar :
you can tell what a button
does by holding the mouse
pointer over each button in
turn - a pop-up text box
describes the use of the
button.

2 To load the program into JASPer use the ‘file/open’ menu option, or use the
‘file open’ button. If you are unsure what is meant by this then browse the
JASP reference in Appendix A before continuing;

Figure 1.6 JASPer - after running ‘Hello World’

3 To see the output from the program we will go into ‘black-box’ mode, which
is done by the menu option ‘file/switch state’ (there is a button that does this
too). Using this option twice will set the view back into ‘white-box’ mode -
you want the view to appear completely white (which perversely shows that
we are back in ‘black-box’ mode). Once we are in ‘black-box mode, think
of the white screen as the screen of a monitor attached to our computer
system;

4 Run the program with ‘processor/go’ (again, there is a button);

14
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5 Once you’ve done this, two things should happen. Firstly, you see the words
‘Hello World!’ appear on the screen. Secondly, a box appears that says
’Processor halted at 000E’ - this is a message that tells us that the
processor has stopped running. We will find out what 000E means later.

If you have followed the instructions above to the letter than you see the
JASPer display as it is shown in figure 1.6. Well done, you’ve run your first
program!

NOTES
When I refer to a menu
operation like ‘file/open’ - I
mean that you should first
click on ‘file’, which will
then show more possible
operations - and then click
on the new operation
‘open’.

It is important to remember that our simple processor, consisting of only 12
registers, an ALU, a CU and joined by buses, has produced this output. Our
minimal processor is actually very capable!

Our processor has read the instructions in the program, and it has blindly
followed these instructions. Later we will learn how to understand these
instructions ourselves, but first we will look at the concepts of number rep-
resentation and simple electronics. Once we have done that we can start to
examine our simple processor in much more detail.

CHAPTER SUMMARY

The key aspects of a computer

� Any processor based system has five key aspects - it takes input, it pro-
duces output, it processes data, it has an information store and it controls
what it does;

� Most modern computers use a von Neumann architecture.

A brief history

� A computer was originally a person - someone who processed data;

� The key aspects of the computer were developed during, and just after,
World War II;

� Hardware developments, notably the invention of the transistor in 1947,
and the development of integrated circuits during the 1970s, lead to the
introduction of the personal computer. Although other companies produced
PCs before IBM, it is IBM that cornered the PC market.
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The typical components within a computer

� A rudimentary computer requires a processor and a memory, as well as
some simple I/O devices;

� Modern computers have many I/O devices that we do not need to examine
in order to understand the fundamentals of a computer system.

� A processor consists of registers, an ALU and a CU all connected by
buses.

The simulated processor, JASPer

� JASPer models our simple processor, and can be used to execute
programs.

SELF TEST QUESTIONS

1 Computers require very precise instructions in order to complete a task.
Write down the program required to teach someone how to make toast.

2 Write down the program required to give someone enough information to
be able to travel from your home to the centre of the nearest town.

EXERCISES

1 Think of a device that you suspect is controlled by a processor, for ex-
ample, a mobile phone. Using this device as a reference, explain the five
fundamental aspects of a computer.

2 Name as many input devices and as many output devices as you can.

3 Attempt to count the number of processors that you may have used so far
today.
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Fundamental
Concepts I - Data
Representation

CHAPTER OVERVIEW

In this chapter we cover the key aspects of number representation
and arithmetic and logical operations used within digital computers.

This chapter includes:

� Number representation - decimal, binary, octal, hexadecimal and
Binary Coded Decimal (BCD);

� Conversion between different bases;

� Binary arithmetic;

� Signed representations - sign and modulus, 1’s complement, 2’s
complement and floating point;

� Logic operations - AND, OR and NOT;

� Data representation - ASCII and Unicode.

2.1 Introducing Number Representation

To understand the actions of our simple processor we first need to look at
the concepts of number representation. We will examine a selection of useful
number representations, and then look at how we can perform arithmetic using
these representations.

17
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Throughout this book we’ll make extensive use of base 16, which is called
hexadecimal, as well as using numbers in base 2 (called binary). We’ll also
briefly look at numbers represented in base 8, which is called octal. It is im-
portant to remember, that whatever base we use to look at a number, we are
looking at different representations of the same number - the number has not
changed.

Going back to the ’Hello World’ example that we ran in the last chapter, after
running the program in JASPer (in ‘black-box’ mode as we discussed) try flip-
ping back to ‘white-box’ mode. It is in this mode that we see the contents of all
the registers.

Look at the register labelled IR (this is the Instruction Register, and we’ll find
out what it is used for later) - it contains F000. This is not some bizarre word for
‘stop’, but a hexadecimal value. The contents of each register in JASPer are
displayed in hexadecimal, apart from one. This is the register labelled ‘PSR’,
the contents of this register is displayed in binary.

We tend to use the particular base that helps us understand what is happen-
ing. We use binary most when we want to perform arithmetic or understand
logical operations - but we tend to use hexadecimal when we want to describe
the contents of registers, or indeed when we want to write our programs in ma-
chine code, ready to be executed by JASPer. Why? Because we humans are
very poor at dealing with long strings of digits. Could you tell if 45678987396 is
larger than 145671876893 without counting the individual digits?

So when dealing with numbers, whether in hexadecimal or in binary, we are
just concerned with the number we are representing, and in how many bits.

2.2 Representing Numbers

2.2.1 Base 10 - Decimal
DEFINITION

Decimal : A number
system that uses base 10.

Let us start with a rethink about decimal. Decimal is base 10 and we learned
in very early childhood that we can use the digits:

� ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’ and ‘9’.

With those digits we can represent very large numbers (like 5672 or
679100000) as well as very small numbers (using a decimal point as in
0.000000005), because when we build up larger (or smaller) numbers we also
use the position of each digit to mean something as well as its value.

Let’s take a number, say 453, in decimal. What are we actually saying here?
Back in infants’ school we learned that we are saying 4 hundreds, 5 tens and
3 units, or 400 + 50 + 3. The position as well as the size of each digit is
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important, because as we can see here, working from the right of the number,
each position to the left is ten times larger than before, in fact it’s ten times
larger because we are using base 10 (decimal).

NOTES
When we write numbers,
we use the subscript to
indicate the base used. So
1112 uses base 2, if we
converted it to a decimal
representation it would be
710. The normal
convention is to not show
the subscript of numbers in
a decimal representation.

So, 453 can be written as

(4× 102) + (5× 101) + (3× 100)

This is shown in table 2.1.

Value 100 10 1
(102) (101) (100)

Decimal number 4 5 3

Table 2.1 Base 10

Now we’ve remembered base 10 let’s move on to the bases we need to know
in order to understand our processor.

2.2.2 Base 2 - Binary
DEFINITION

Binary : A number system
that uses base 2.

Base 2 is similar to decimal, apart from the fact that we can only use the digits
‘0’ and ‘1’.

If we look at a number, like 1010112, every bit has a value and a position, as
shown in table 2.2. Once again the position is important, because as we move
leftwards through our number each bit position represents a value twice as
large as its rightmost counterpart.

1010112 can therefore be written as

(1× 25) + (0× 24) + (1× 23) + (0× 22) + (1× 21) + (1× 20)

As any number multiplied by zero equals zero, this can be shortened to

(1× 25) + (1× 23) + (1× 21) + (1× 20)

DEFINITION
Bit : Binary digit. The digit
can be 1 or 0. A sequence
of bits is often called a bit
pattern. Each bit is twice the size as it would be if it were one place further right

because we are using base 2. For example, 101002 is twice as large as 10102.

In fact, we can now see that even though we are using binary, the same rules
as we had when we were using decimal numbers still apply. Now however
we can see that there is a generic rule of position that we hadn’t considered
before, that whatever the base, in any number a digit is larger than a similar
digit one place to the right by a factor of the base.
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Value 32 16 8 4 2 1
(25) (24) (23) (22) (21) (20)

Binary number 1 0 1 0 1 1

Table 2.2 Base 2

All the registers in JASPer are 16-bit registers. This means that they can store
bit patterns that are sixteen bits long . These values in binary then are from
00000000000000002 to 11111111111111112. This can be quite a mouthful,
and is the reason that we generally refer to the contents of registers using
hexadecimal, as we will see later.

DEFINITION
Byte : Binary term. A
sequence of 8 bits.

A group of 8 bits is known as a byte , so we can also say that the JASPer
registers are 2 bytes wide.

Another term widely used for bit patterns of a certain width is a word. A word
is considered to be the size of the bit pattern that can be transferred between
different registers in one go. Within JASPer the word size is 16 bits, so we can
also say that our registers can contain 1 word. Different processors have dif-
ferent word sizes, whereas a byte is always 8 bits (it didn’t used to be however,
but it is the convention today).

Within a 16-bit word, the most significant 8 bits is often termed the high-byte
(sometimes hi-byte), whereas the least significant 8 bits is termed the low-byte
(sometimes lo-byte).

2.2.3 Base 16 - Hexadecimal
DEFINITION

Hexadecimal : A number
system that uses base 16.

Hexadecimal use the same rules as before, only we have a wider range of
digits which are:

� ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘A’, ‘B’, ‘C’, ‘D’, ‘E’ and ‘F’.

‘A’ represents 10, ‘B’ represents 11, ‘C’ represents 12, ‘D’ represents 13, ‘E’
represents 14 and ‘F’ represents 15.

So in hex (which we will start to use as an abbreviation of hexadecimal) we can
have numbers like 341916, FFFF16, 163D16 and F00D16. It takes practice
before you can start dealing with hex numbers, but it comes with time.

For example, the hexadecimal value 53F16 can be written as

(5× 162) + (3× 161) + (15× 160).
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Value 256 16 1
(162) (161) (160)

Hex number 5 3 F

Table 2.3 Base 16

As mentioned previously, we usually display the contents of the 16-bit reg-
isters in JASPer using hexadecimal. Using hexadecimal, the contents of the
registers can range from 000016 to FFFF16.

2.2.4 Base 8 - Octal

The last base we will look at is base 8, otherwise known as octal. The digits
we can make use of are:

� ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’ and ‘7’.

Once again, now we know the general rule, we know that if we take a typ-
ical octal number like 5638 that each position is eight times larger than the
previous.

For example, the octal value 3758 can be written as

(3× 82) + (7× 81) + (5× 80).

Value 64 8 1
(82) (81) (80)

Octal number 3 7 5

Table 2.4 Base 8

Octal is not used very often these days, binary and hexadecimal are far more
common bases used within computing. The most common use of octal still
around today is in the file system attributes of a UNIX operating system. We
won’t use octal anymore in this book.
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2.2.5 BCD - Binary Coded Decimal

This is a format whereby decimal representations are stored in a binary format.
Patterns of four bits can be used to represent the decimal values of 0 through
to 9. These are shown in table 2.5.

Decimal BCD
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

Table 2.5 BCD representation

For example, if we wished to represent the decimal number 14 in BCD we
would look up the representations of the individual digits and then place them
together.

� 1 = 00012

� 4 = 01002

� Therefore 14 in a BCD representation is 000101002.

BCD is less common than it used to be. It has two key drawbacks, these are:

� It is an inefficient representation - as the binary values 10102 to 11112 are
unused in BCD (some BCD representations use two of the unused codes
to represent ‘+’ and ‘-’), and 4 bits for a single digit takes up space.

� Some processors have support in the ALU to perform BCD arithmetic, but
it requires additional circuitry. JASPer doesn’t support BCD arithmetic in
the ALU. If the processor doesn’t have support for BCD then it takes a lot
of work by the programmer to perform BCD arithmetic.

We won’t use BCD anymore in this book.
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2.2.6 Converting Between Bases

Converting between the most common bases is made easy by following a few
simple rules - the most common conversions are included below.

Decimal ⇔ Binary

� Binary to Decimal Conversions
Let’s start off by converting a number in a binary representation into deci-
mal. We’ll choose the 8-bit binary number 001001112 and see how we go
about converting it. Firstly, let’s lay it out in a table showing the positional
value of each bit.

Value 128 64 32 16 8 4 2 1
(27) (26) (25) (24) (23) (22) (21) (20)

Binary number 0 0 1 0 0 1 1 1

Table 2.6 Binary to decimal conversion

So, we can state

(0×27)+(0×26)+(1×25)+(0×24)+(0×23)+(1×22)+(1×21)+(1×20) =
39

Or more simply,

(1× 25) + (1× 22) + (1× 21) + (1× 20) = 39

001001112 = 39.

� Decimal to Binary Conversions
We can use the reverse process of the above. Let’s imagine that we want
to convert the decimal value 28 to an 8-bit binary value. To do this we can
fill in a table like before. For each column, starting with 128, it’s a simple
case of division and remainder.

� So, if we start off, obviously 128 doesn’t go into 28, and neither does
64 or 32 (place a 0 in each of these columns);

� 16 does go into 28 so we put a 1 in the 16’s column. We now have 12
to convert (28 - 16);

� 8 goes into 12 (1 in the 8’s column) with a remainder of 4;

� 4 goes into 4 (place a 1 in the 4’s column) - there isn’t any remainder,
so fill the other columns with 0.

As you can see, we end up with a value of 000111002, the binary
equivalent of the decimal value 28.
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Value 128 64 32 16 8 4 2 1
(27) (26) (25) (24) (23) (22) (21) (20)

Binary number 0 0 0 1 1 1 0 0

Table 2.7 Decimal to binary conversion - converting 28

Hexadecimal ⇔ Binary

Converting between hex and binary is very simple indeed - as four binary digits
can be grouped together and represented as one hex digit. Table 2.8 shows
you how.

Binary Hex
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

Table 2.8 Binary to hex conversion

� Hexadecimal to Binary Conversions
Let’s imagine that we want to convert the hex value ABCD16 into binary.
Nothing could be easier! For each hex digit, look up the binary equivalent
in table 2.8 and write down the 4 bits that represent that hex digit. You get
1010 1011 1100 1101, which when we write these all together we get the
value 10101011110011012 which is the binary equivalent of ABCD16.
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� Binary to Hexadecimal Conversions
Again, this is easy. Let’s convert 10100010010001002 into hex. Firstly, we
group the bits starting from the right into fours to get 1010 0010 0100 0100
and then convert each group to get A 2 4 4, so the hex equivalent we were
looking for is A24416. All bit groups must start from the right, if you have
an incomplete group of four bits on the left then write zeroes to the left of
the number until the left most group consists of four bits.

Decimal ⇔ Hexadecimal

For converting between decimal and hexadecimal, I could show you yet
another conversion method. Or we could cheat by using what we already
know.

� Decimal to Hexadecimal Conversions - convert the decimal number to
binary, and then convert that to hexadecimal.

� Hexadecimal to Decimal Conversions - convert the hexadecimal num-
ber to binary, and then convert that to decimal.

2.3 Introducing Binary Arithmetic

Now we have covered the representations we need, it is time to begin studying
binary arithmetic, so let us attempt to add two binary numbers together. We
will add 5 to 7.

Representation
Decimal

5
7

Carries generated

1 2

+
Representation
Binary

01 1
11
01

11

+
1
0

1

1

1

We perform the addition in binary using the same process that we have always
used for decimal; we may have changed the base we are using but the rules
of arithmetic have not changed! So, right to left, we first add 1 to 1, which of
course gives us 2 in decimal, and in binary the result 10, or 0 carry 1. Next,
we add 1 to 0, plus the previously generated carry to get 0 carry 1, etc. The
result is 11002, which when converted to decimal is 12.

This process is the same whether we are adding two 4-bit numbers together
or two 64-bit numbers together.
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2.4 Signed Numbers

So far we have only discussed unsigned numbers, and we need to figure out
how to represent negative numbers too before we can start to think about
arithmetic further.

The first method we’ll discuss is sign and modulus, but it turns out that this
method of representing signed values gives us a few problems. So we then
look at 1’s complement which solves some of the problems associated with
a sign and modulus representation but gives us some more problems of its
own. Finally, within this section we introduce 2’s complement, which solves
the problems of the 1’s complement representation. It does have one minor
issue of its own, but as it solves all our other issues it is our accepted method
of choice.

For illustrative purposes, we will use 8-bit representations within this section,
only moving to 16-bit representations when we perform arithmetic using our
simple processor.

2.4.1 Sign And Modulus

The first issue to solve, when looking at how to represent signed numbers, is
how to store the sign information - whether a number is positive or negative. A
possible solution is to use the leftmost bit to represent the sign of the number
represented.

If the left most bit contains a ’0’ we’ll say the bit pattern represents a positive
number, and if it contains a ’1’ we’ll say the bit pattern represents a negative
number. So the leftmost bit of an 8-bit sign and modulus value indicates the

DEFINITION
MSB : The leftmost bit of a
number is known as the
Most Significant Bit, or
MSB.

value of the sign, therfore we can represent the number +7 as 000001112.
Obviously it means in our 8-bit representation that we can’t store as many
positive numbers, because we are using half of the possible bit patterns to
indicate negative numbers, but on the plus side we now have a representation
that we can use to indicate both positive and negative numbers.

DEFINITION
LSB : The rightmost bit of
a number is known as the
Least Significant Bit, or
LSB.

Sign Modulus
0 0000111

Table 2.9 Sign and Modulus positive numbers

We can represent −7 as 100001112.
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Sign Modulus
1 0000111

Table 2.10 Sign and Modulus negative numbers

This looks like we’ve solved all our problems, because we can now represent
both positive and negative numbers. All we have to be able to do now is per-
form arithmetic on these numbers, and we have the basis for our ALU, the
basic calculator in our processor.

So, let’s just prove that sign and modulus solves our arithmetic problem. We’ll
add +5 to −5, and, all things considered, we would expect the result 0. Let’s
see what happens.

0 0 0 0 0 01 1
0 0 0 0 0 111

00000 111

1

Carries generated

1

+ +
-

5
5

Decimal
Representation

We can see this answer is a negative number, and when we convert into
decimal we have −10. This isn’t what we expected; in fact it means that if
we were to use sign and modulus representations in our processor then we
would have to design quite a complicated circuit within our ALU to actually add
these numbers together and get the right answer - actually we would have to
deal with the number representation and the sign representation separately.
In fact, this issue is so major, that it’s time for us to throw away this number
representation and try another: 1’s complement.

2.4.2 1’s Complement

We were happy before with our representation for positive numbers, but we
seemed to have problems with our negative representation. This time we will
alter our way of representing negative numbers. With 1’s complement, if we
want to represent a negative number, we start with the positive representation
of that number and then flip all the bits, which means that where we encounter
a ‘1’ in the bit pattern we change it to a ‘0’, and vice versa.
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5

- 5

0

0 0

=

=

1 1

111111

0 0 0 0 0
10 2

10 2

+

We can still use the MSB to indicate the sign as you can see that it was flipped
along with the other bits in the representation. However, now we’ve flipped the
bits it’s not so obvious to actually see the value of the number represented
- 111110102 isn’t obviously a representation of −5, but that doesn’t matter
because we can just set the rule that, when we see that the MSB is set to 1,
we flip all the bits to find out the value of the negative number represented.

Now let’s see if we can perform arithmetic on this representation.

0 0 0 0 0 01 1
1 1 1 1 0 011

1

Representation
Decimal

+

11111 Carries generated

10000000
1 Add in the final carry

000000

10000000

1 0

Initial result

Final result

1

Initial result

+
-

5
3

When we perform this calculation we have to stick to the range of our bit pat-
terns. The above example uses 8-bit bit patterns, and so the result must also
be represented in 8 bits - this is why we don’t add in the final carry, as this
would give us a 9-bit result. However, we don’t forget about this as we add in
this final carry to our initial result to achieve the final result.

We do get the correct answer, but only when we have the extra rule to always
add in any left over carry into our final result - that way we will always arrive at
the correct answer.

Let’s try another simple sum.

0 0 0 0 0 01 1
1 1 1 1 01

Representation
Decimal

+

1 Initial result
0 1

1111111

A negative result?

000000 Result represents -00 0

Flip the bits to find out which negative value

+
-

5
5
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How can we have −0? Unfortunately, we have just hit on the second and most
important issue with 1’s complement - we have two separate representations
for 0, these being +0 and −0. This will have a major impact on our proces-
sor, because it means that, when we test to see if the result of an arithmetic
operation was zero, then we have to check the result for two distinct values.

So, apart from the problems of multiple representations of zero and the issue
of always having to remember to add in the final carry (which doubles the time
to do an add), we have a representation that not only allows us to represent
positive and negative numbers - but we can also successfully perform arith-
metic on them. Next, we’ll turn to 2’s complement, an improvement on 1’s
complement that removes the two issues we discussed.

2.4.3 2’s Complement

2’s complement is very similar to 1’s complement. Positive numbers are
again represented exactly as we have seen before, but negative numbers
are represented slightly differently. For example let’s take the 2’s complement
representation of 7 in 8 bits.

0 0 0 0 0 1 1 +7
Representation
Decimal

11111 Flip the bits

1

Result represents -7

Add 1

0 0

1

0 0 0

111111

The simple rule for obtaining the 2’s complement representation of the
negative of a number is

� Flip the bits

� Add 1

and that’s it. This also simplifies the type of operations we need to perform,
since any subtraction operation can be termed instead as an addition with the
2’s complement representation of one of the values. For example, instead of
performing:

7− 5

We can perform:
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7 + (−5)

Now we know how to figure out the representation of a negative number, let’s
try our arithmetic from before.

0 0 0 0 0 01 1
1 1 1 11

Representation
Decimal

+

Result

Carries generated

11 0
01000000

1111111

Discard final carry

+
-

5
3

So, we generated a final carry, do we care? No, we throw it away (actually
in our ALU it will be used as something called a flag, but more on that much
later) ensuring that we have a result with the correct number of bits. In one
arithmetic operation we were able to produce the correct answer, without any
additional operations required. All we have to figure out now is when the result
of the operation is to be zero - let’s see what happens.

0 0 0 0 0 01 1
1 1 1 11

Representation
Decimal

+

Result

Carries generated

1
0000000

1111111

Discard final carry

10
0

1

+
-

5
5

A carry is generated as before, but again we throw it away. The final result
is 0. Unlike with the 1’s complement representation, we no longer have two
representations of zero, as 111111112 in 1’s complement is a valid negative
number (if we flip the bits and add one we find out that it’s the 2’s complement
representation of −1).

There is one oddity left with 2’s complement, and we are willing to put up
with it because it solves so many of the issues that we had with other rep-
resentations. If we take the 2’s complement of the largest negative number,
100000002, let’s see what we end up with.
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0 0 0 0

1111 Flip the bits

1 Add 1

0 01

1 0 0 0

0 1 1 1

Result : Back where we started!00000

1111111 Carries generated

That’s right, the 2’s complement of the largest negative number is itself - this is
because of the fact that we have one less positive number than we do negative
numbers (the extra negative number is because zero is non-negative).

2.4.4 The Overflow Problem

There is one major issue that we have yet to discuss on the subject of 2’s
complement arithmetic, and that is the concept of overflow.

Overflow occurs when we limit ourselves to representations that use a
restricted number of bits. For example, let us add the numbers 88 and 41
using a 2’s complement 8-bit representation.

0001 1000

0 1 1 1 1 1 1 0

Representation
Decimal

0 0 0
0 0 0 1

+88
+41

+1 11 0 0
0 1 1 0

1111 Carries generated

0001 1000 Initial result is negative

1

0 1 1 1 1 1 1 1

Flip the bits
Add 1

Result is therefore -127 ????

Initial result

What has happened here? We do not have enough bits to represent the cor-
rect positive result, and the sign bit of the result has been changed. Overflow
has occurred.

We define overflow as:

� When the signs of both initial values are the same, and the sign of the
result is different.
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Therefore it is only possible for overflow to occur when we add two positive
numbers together, or add two negative numbers together. It is impossible to
have overflow when we add a positive and a negative number together.

Overflow is something that we need to check for when we later come to
write programs that use signed binary arithmetic. It is so important that our
processor gives us a way to detect it, and we’ll see this in chapter 5.

2.4.5 2’s Complement In JASPer

JASPer performs 2’s complement arithmetic in its ALU. Try the following:

� Using the ‘Update Registers’ dialog box, enter these values into the ALU
(these are hexadecimal values - but shown without a subscript so you can
see exactly what to enter into the ALU registers, and what is displayed):
ALUx = 000F, ALUy = 0008;

� Use the ‘ALU operation’ dialog box (as shown in figure 2.1) to perform
an add operation. To do this you need to click on ‘add’ and then ‘OK’ to
remove the dialog box;

� The result in the ALUr should now be 0017 which is 1716. If you convert
each of these values into decimal you will find that you have just performed
15 + 8 = 23.

Figure 2.1 The JASPer ALU dialog box

We can also do a subtraction. Try the following:

� Enter these values into the ALU: ALUx = 0008, ALUy = 000F;

� Perform a sub (for subtract) operation;

32



www.manaraa.com

Fundamental Concepts I - Data Representation

� We can see that the result is FFF9, and because the MSB is set to 1 (in
binary we have 11111111111110012) we know that this result represents a
negative number. However, it is not immediately obvious to us what partic-
ular negative number this result represents, so we can actually use JASPer
to take the 2’s complement of this result. To do this, set the ALUx value
to FFF9 and then run the neg operation - this performs a 2’s complement
operation;

� The result now in the ALUr is 0007, in other words we have shown that
8− 15 = −7.

Remember that a subtraction is actually a complement and an add.

The ALU will be covered in much greater depth in chapter 5.

2.5 Floating Point Numbers

So far we have only discussed integer values. For real numbers we need a
floating point representation to represent real numbers like 3.14 or 1.563 ×
1028.

NOTES
Floating point software
libraries are still used by
processors that do not
have floating point
hardware. Early processors could not perform floating point operations, instead the

programmer had to write subroutines to perform floating point operations in
software. Later, some processor systems included an extra processor called
a floating point co-processor (FPC). The processor would communicate with
the FPC whenever a floating point operation was required. Nowadays modern
processors tend to have a floating point unit (FPU) as part of the processor
itself.

Initially, those machines that could perform floating point operations tended to
use proprietary methods which made transferral of programs from one ma-
chine type to another very difficult. Eventually a standard was introduced

DEFINITION
IEEE : The Institute of
Electrical and Electronic
Engineers. They set many
standards used within the
electronics and computing
industries.

known as IEEE 754. All modern processors refer to this standard to perform
floating point operations.

0.5467 x 2
34

BaseMantissa

Exponent

Figure 2.2 Parts of a floating point number

33



www.manaraa.com

Fundamentals of Computer Architecture

Essentially, floating point numbers can be defined in terms of the mantissa, the
exponent, and the base - as shown in figure 2.2. The base for binary floating
point values is always 2.

IEEE 754 defines both 32-bit and 64-bit floating point number representations.
These are shown in figure 2.3.

8-bit Exponent 23-bit Mantissa

11-bit Exponent 52-bit Mantissa

1-
bi

t S
ig

n
1-

bi
t S

ig
n

32-bit Single Precision Format

64-bit Double Precision Format

Figure 2.3 Floating point number formats

JASPer cannot perform floating point operations, and as a knowledge of
floating point is not necessary to understand the fundamental aspects of
processors, we won’t consider floating point any further.

If you want to read more on the subject of floating point, I recommend [Sta03]
or [MH00].

2.6 Logical Operations

Now we have looked at arithmetic operations on bit patterns it is time to look
at logical operations. The most common logical operations that we can apply
to bit patterns are AND, OR and NOT. They are each described here in turn.

2.6.1 AND

With an AND operation, the result is set to 1 only when both initial values are
1, otherwise the result is 0.
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Y R

0

0

0 0

0

00

1

1

1 1 1

X

Figure 2.4 The Logical AND operation

A table containing the possible initial values and the result for each is shown
in figure 2.4. This sort of table is known as a truth table.

If we wanted to perform a logical AND operation on two 8-bit bit patterns we
would perform this process on each bit position of both bit patterns. For ex-
ample, if we were to AND the values 001001112 and 00101110 we would first
perform the AND operation on the LSB of each, followed by the next pair, and
so on. This operation, as all logical operations, works for any number of bits.

11 0
0 0 0 0 1 11

X AND Y

1 10
1

00 111

00

0 0 0

Y
X

2.6.2 OR

With an OR operation, the result is set to 1 when either (or both) of its initial
values are 1, otherwise the result is 0.

R

0

0

0 0

0

1

1

1 1 1

X

1

1

Y

Figure 2.5 The Logical OR operation
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Applying an OR operation to two values is a similar process to the AND pro-
cess we saw before, except that we apply the OR process as displayed in
figure 2.5.

For example, if we were to OR the values 001001112 and 00101110 we would
first perform the OR operation on the LSB of each, followed by the next pair,
and so on.

11 0
0 0 0 0 1 11

X OR Y

1 10
1

111

00

0 0 0

Y
X

1 1

2.6.3 NOT

Finally, the NOT operation negates the individual bits of a single bit pattern as
shown in figure 2.6.

0

X

1

1

0

R

Figure 2.6 The Logical NOT operation

We apply this process to all bits in the bit pattern, as shown here.

NOT X0

0 0 0 0 1 111 X

000 1 111

2.7 Dealing With Text

So far we have only looked at ways to represent numbers, but what about when
we need to represent text? Without a text representation we couldn’t have had
our ’Hello World’ program in chapter 1. To deal with text we need to associate
each character with a numeric value. The most common text representation
used in computers these days is ASCII, which is a text representation that
uses 7 bits, so it can only represent up to 128 separate character codes. ASCII
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isn’t the only character encoding available to us - some older IBM machines
make use of a system called EBCDIC, but you are unlikely to ever find it used
with microprocessor based systems.

DEFINITION
ASCII : A set of special
codes for text characters.
(pronounced as ass-key),
it stands for American
Standards Code for
Information Interchange.

The ASCII character set is displayed in table 2.11. To calculate the hex value
of any character just take the column heading (‘0’ through to ‘7’) and place
after it the row heading (from ‘0’ to ‘F’) and you end up with the correct code.

For example, the ASCII code for the letter ‘R’ is found as follows:

� The column that ‘R’ is in is labelled with the hexadecimal digit 5;

� The row that ‘R’ is in is labelled with the hexadecimal digit 2;

� This produces the hexadecimal value 5216.

Sometimes we will also see this written as $52 or 0x52 which means the same
thing. From now on in this text I will use the form $52 to indicate the hex value
5216, etc.

0
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ENQ

STX

SOH

ETX

EOT

BEL

BS

HT

LF

VT

FF

CR

SO

NUL

ACK

SI

DCL

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US DEL

!
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(

)
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#

$
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High Hexadecimal Digit

Table 2.11 The ASCII Codes
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DEFINITION
GUI : Graphical User
Interface. Think pretty
screen displays with nice
menu systems driven with
mouse-clicks. For
example, Microsoft
Windows.

Two points are worth noting from the table:

1 Characters below $20 are non-printing characters. They are mostly used to
send particular messages between computers and usually we don’t need
to ever worry about them. Some are still useful to us in JASPer, for example
the codes $0A and $0D are the characters for line-feed and carriage return
respectively - we can use them to drive the cursor location when printing to
our simple monitor. They were used by the ‘Hello World’ program.

2 If we know the ASCII code for a capital letter, simply by adding $20 we can
obtain the code for the respective lowercase letter. This feature can often
prove useful when writing programs that use I/O, as we’ll see in chapter 12.

However, even ASCII is slowly being replaced. In modern computer systems
it is being replaced by Unicode which is designed to cope with many more
character sets. ASCII is a 7-bit, and hence a limited character code system,
while Unicode is a 16-bit system. Unicode can deal with the requirements of
modern multi-lingual graphical user interface (GUI) based systems.

The processor sends the required code to the computer’s monitor (we’ll
talk about how this happens in chapter 12), and the required character is
displayed.

CHAPTER SUMMARY

Representing numbers

� Any representation is just that - a representation. We’ve looked at a number
of different data representations for both numbers and text. If we change
the representation of a number from one base to another, we have not
changed the value of the number - it’s still the same number ;

� We need to know which representation is being used before we figure out
what value a bit pattern represents;

� We need to remember the number of bits we are working with in a
representation;

� At all times we should remember which particular representation we are
using and be consistent;

� We examined binary, octal, decimal, hexadecimal and BCD representa-
tions;
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� We introduced methods to convert between representations.

A quick reference for the representations covered is at the end of this section.

Binary arithmetic

� The process for binary arithmetic is identical to that for decimal arithmetic
- only the base has changed.

Signed numbers

� Three methods for representing signed numbers were introduced - sign
and modulus, 1’s complement and 2’s complement;

� 1’s complement has two representations of zero;

� 2’s complement has one representation of zero;

� To take the 2’s complement of any value you flip the bits and add 1;

� Using a 2’s complement representation we need never perform subtraction
- instead we take the 2’s complement of one of the values and perform an
add operation instead;

� The majority of modern computers perform binary arithmetic using 2’s
complement. JASPer uses 2’s complement arithmetic in its ALU.

Logical operations

� AND - the result is set to 1 only when both initial values are 1, otherwise
the result is 0;

� OR - the result is set to 1 when either (or both) of its initial values are 1,
otherwise the result is 0;

� NOT - negates the individual bits of a value.

Floating point

� A floating point number is defined in terms of its mantissa, exponent and
base;

� The floating point standard used by most modern processors is IEEE 754.

39



www.manaraa.com

Fundamentals of Computer Architecture

Text representation

� Text can be represented with a code system such as Unicode or ASCII.
JASPer makes use of the ASCII character set;

� ASCII is a 7-bit character set;

� Unicode is a 16-bit character set.

Some examples for the meanings of particular bit patterns are shown here:

Representation Meaning of 001000112 Meaning of 111111102

Unsigned number 35 254
Sign and Modulus 35 −126
1’s Complement 35 −1
2’s Complement 35 −2

BCD 23 Not meaningful
ASCII # Not meaningful

Number representation quick reference

This table shows the representations of 0 to 15 in binary, octal, decimal,
hexadecimal and binary coded decimal.

Binary Octal Decimal Hex BCD
0000 0 0 0 0
0001 1 1 1 1
0010 2 2 2 2
0011 3 3 3 3
0100 4 4 4 4
0101 5 5 5 5
0110 6 6 6 6
0111 7 7 7 7
1000 10 8 8 8
1001 11 9 9 9
1010 12 10 A +
1011 13 11 B -
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F
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SELF TEST QUESTIONS

1 Convert 42 to an 8-bit binary value.

2 Convert the 8-bit binary value 000010112 to decimal.

3 Convert the 8-bit binary value 010011012 to hexadecimal.

4 Convert the 16-bit hexadecimal value BEEF16 to binary.

5 Convert the 16-bit hexadecimal value BEEF16 to decimal.

6 Convert 28 to a 16-bit hexadecimal value.

7 Perform a logical AND on 000001112 and 001001002.

8 Perform a logical OR on 000001112 and 001001002.

9 Add 011000112 and 011000012 together using an 8-bit 2’s complement
representation. What is wrong with the result?

10Add 001000112 and 011001012 together using an 8-bit unsigned repre-
sentation. Convert the result into hexadecimal.

11Figure out the representation of -12 in both a 16-bit and an 8-bit 2’s
complement representation.

12What is the ASCII representation for ‘F’ in hexadecimal?

13What is the ASCII representation for ‘f’ in hexadecimal?

14What is the ASCII representation for ‘5’ in hexadecimal?

EXERCISES

1 Convert the decimal value 12 to an 8-bit binary value.

2 Convert the 8-bit binary value 001011112 to decimal.

3 Convert the 8-bit binary value 001011112 to hexadecimal.

4 Convert the 16-bit hexadecimal value F00D16 to binary.

5 Convert the 16-bit hexadecimal value F00D16 to decimal.

6 Convert the decimal value 142 to a 16-bit hexadecimal value.

7 Perform a logical AND on 001111002 and 001101012.

8 Perform a logical OR on 001111002 and 001101012.

9 Add 001011002 and 000100012 together. Convert the result into hexadec-
imal.

10Convert the decimal values 45 and -34 to binary using a 2’s comple-
ment representation. Add them together and convert the result into
hexadecimal.

11My name (‘Mark’) in ASCII is ‘$4D $61 $72 $6B’. What is your name
converted into ASCII?

12Using the ALU in JASPer, add $00FE and $40DA together.

13Using the ALU in JASPer, add $7012 and $103D together.
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Fundamental
Concepts II - Digital
Electronic Circuits

CHAPTER OVERVIEW

This chapter focuses on the fundamental aspects of digital circuitry
that can be used to build the components of a computer system.

This chapter includes:

� Gate logic - AND, OR and NOT;

� How to build circuits with gates;

� Modelling circuits with truth tables;

� Boolean algebra, including De Morgan’s laws;

� The package ‘Digital Works’, used to simulate logic circuits.

3.1 Introducing Digital Electronics

All digital computers today are built up from electronic circuitry. We can exam-
ine the use of circuit elements called logic gates (or gates for short) without
worrying how they are created - in fact their usage can be entirely separated
from what they are built from. In the past, gates were built from vacuum tubes,
and later from transistors. Today they are all generally built from integrated cir-
cuits (many transistors created on one single silicon chip). It is not important
what we build our circuits from, provided that we are only interested in what
they do, rather than how fast they do it.
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All logic circuits can be built using the most simple of logic gates. There are
three elementary gates called AND, OR and NOT (after the logical operations
they can perform), and using these we can build more useful gates called
NAND, NOR and XOR gates. All gates are binary - they take one or more
binary input values, and produce a binary output value; each of these gates
can be described using truth tables. This shows all the inputs to the gate, and
the output it produces dependant on the values of the inputs.

3.1.1 AND

Figure 3.1 contains the truth table and the symbol for the AND gate - the truth
table shows all possible input values for the gate, and lists the output for each
set of inputs. If we look at the symbol for the gate first, we can see that it has
two inputs (labelled X and Y), and one output labelled R. The truth table shows
us, for each possible set of input values, what the output would be.

With the AND gate, the output is set to 1 only when both inputs are 1, other-
wise the output is 0 - this is identical to the AND operation in binary arithmetic
that we discussed in chapter 2.

Sometimes we refer to the value 1 in a truth table as true and a 0 as false. We
can also sometimes refer to the value 1 as high and the value 0 as low.

It is possible to have AND gates with more than two inputs but their output
follows these same rules.

Y R

0

0

0 0

0

00

1

1

1 1 1

X

RX

Y

Figure 3.1 The AND gate

Compare this figure to figure 2.4 in chapter 2.
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3.1.2 OR

Figure 3.2 shows the truth table and the symbol for an OR gate. With the OR
gate, the output is set to 1 when either (or both) of its inputs are 1, otherwise
the output is 0.

R

0

0

0 0

0

1

1

1 1 1

X

1

1

X R
Y

Y

Figure 3.2 The OR gate

Compare this figure to figure 2.5 in chapter 2.

It is possible to have OR gates with more than two inputs but their output
follows these same rules.

3.1.3 NOT

Figure 3.3 shows the truth table and the symbol for a NOT gate. A NOT gate,
sometimes referred to as an inverter, is simpler than the other two gates that
we’ve seen so far as it has only a single input - it simply inverts whatever its
single input is.

0

X

R

1

1

0

R

X

Figure 3.3 The NOT gate

Compare this figure to figure 2.6 in chapter 2.
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3.1.4 NAND

Now we can move on to some useful gates that can be built from AND, OR
and NOT. The first of these is the NAND gate. NAND is short for NOT AND.

Figure 3.4 shows the truth table and symbol for the NAND gate, as well as how
the gate can be built from an AND and a NOT gate - the output from the AND
gate is the input to the NOT gate. As you can see, the NAND gate produces
the exact opposite output of the AND gate

Y R

0

0

0

0

1

1

1 1

X

1

1

1

0

X

Y
R

RX

Y

Figure 3.4 The NAND gate

3.1.5 NOR

Figure 3.5 shows the truth table and symbol for the NOR gate, as well as how
the gate can be built from an OR and a NOT gate. The NOR gate produces
the exact opposite output of the OR gate. NOR is short for NOT OR.

R

0

0

0

0

1

1

1 1

X Y

1

0

0

0

X R
Y

Y

X R

Figure 3.5 The NOR gate
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3.1.6 XOR

Figure 3.6 shows the truth table and symbol for an XOR gate (sometimes
referred to in some texts as an EOR gate). You can see that it is very similar
to the OR gate - apart from the fact that it’s an exclusive or which means that
the output is 1 only when either input is 1. If both inputs are set to 1 then the
output is 0 - compare this with the OR gate in figure 3.2.

R

0

0

0 0

0

1

1

1 1

X

1

1

X R
Y

Y

0

X Y

R

Figure 3.6 The XOR gate

Figure 3.6 also shows how the XOR gate can be built from basic OR, AND
and NOT gates too:

� Reading the diagram from left to right, X and Y are the inputs to the first
AND gate and the OR gate;

� The output from the first AND gate is the input to the NOT gate;

� The outputs from the OR gate and the NOT gate are inputs to the second
AND gate;

� The output of the second AND gate is the output R.

3.2 Building Circuits With Gate Logic

All logic circuits can be built from the gates we’ve just described - in fact we
can describe our entire processor in this fashion - but let’s start with more
simple circuits.
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X Y

S

C

N1

N2

A1

A2

A3

O1

Figure 3.7 Building circuits

We can connect gates together as in figure 3.7. We can see from this circuit
all of the key features found in much more complicated circuits. This particular
circuit has two inputs (X and Y), and two outputs (labelled S and C).

We can see that the output from one logic element can be used as an input
to another logic element, and we can see that the same input can be used as
inputs to multiple logic elements. To understand how we can connect the parts
of a circuit you need to understand the following points:

� When we draw circuits, where two wires cross over each other they are
not logically joined;

� Two wires are logically joined only when a dot is shown over the intersec-
tion of the two wires. Look at the diagram in figure 3.7 to understand which
logic gates are connected to others.

Any circuit like this can be described in a truth table, almost treating the circuit
itself as a single element - the circuit has inputs and can have one or more
outputs, and our truth table can describe the outputs for all possible inputs to
our circuit. The truth table for the circuit displayed in figure 3.7 is shown in
figure 3.8. Later on, at the end of this chapter, we will use the package Digital
Works to test this circuit, so we can prove that the truth table is correct.
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1
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Figure 3.8 Building circuits - the truth table

One thing worth noting before we move on to a more complicated example,
is the use of specific wires as a connection to NOT X, which we write as X̄.
This is shown in figure 3.9, where the inputs for the gates are taken from the
wires for X, Y , X̄ and Ȳ .

In figure 3.7 we used individual NOT gates to obtain the inputs X̄ and Ȳ as
required by the AND gates A1 and A2. Larger circuits often need to reference
X̄ and Ȳ quite often, and so we draw our circuit as shown in figure 3.9.

NOTES
NOT : X̄ = NOT X. e.g. if
X=1, then X̄=0

X YX Y

S

C

A1

A2

A3

O1

N1

N2

Figure 3.9 A way of dealing with X̄ and Ȳ

3.3 Building A Circuit From A Truth Table

In a moment I’ll show you how it is possible to build any circuit from a truth table
- but it’s worth noting a very important point. We will not be building efficient
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circuits. There are many rules we could follow in order to minimize the number
of gates that we use (or more accurately to minimize the number of underlying
transistors), but these rules only complicate matters, so we aren’t going to
use them. For our purposes we don’t care about creating efficient circuits - we
want them to work; we aren’t trying to get a job as a chip designer for Intel!

Let’s take a complicated truth table, like the one shown in figure 3.10. This
particular table has three inputs and two outputs. The circuit it describes has
an interesting function, but we don’t want to be bothered with that at the mo-
ment, we just want to draw the corresponding circuit diagram that this truth
table models.

We will take this in two stages, firstly we will model the output labelled as S,
and then we will model the output labelled as Cout. Once we’ve done that,
using some very simple rules, we will draw the complete circuit.
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0

S

1

0

0

0

0

1

1

1

1

0

1

1

1

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

X C Cin out

Figure 3.10 Building a circuit from the truth table

Here are the rules for drawing the circuit with the inputs, X, Y and Cin:

� Identify all lines in the truth table where the required output is set to 1;

� For each identified line, connect the inputs to an AND gate such that the
output from the AND gate is a 1;

� Feed all of the outputs from the set of AND gates into an OR gate.

Let’s go through that in stages for the first part of our truth table for output S.
There are four lines in the truth table that result in the value of S being set to 1.
These are shown in figure 3.11. Have a look back at figure 3.10 to see where

50



www.manaraa.com

Fundamental Concepts II - Digital Electronic Circuits

these values have come from. These lines of the truth table with outputs of 1
are known as minterms.

0

0 1

0 1

0

1

1

1 0 0 1

1 1 1 1

Y SX Cin

Figure 3.11 The truth table for output S

Now, for each line in figure 3.11 we connect an AND gate into our circuit. For
example the first line has X = 0, Y = 0 and Cin = 1. We wire up our first AND
gate such that it takes three inputs related to this first line in the truth table -
we need all inputs to the gate to be 1. Currently this isn’t so as both X and Y
are set to 0. We can modify these inputs by the use of two NOT gates, as we
showed before, or we can connect our AND gate to the lines that represent X̄
and Ȳ respectively. Now, when X = 0, Y = 0 and Cin = 1, all inputs to the
AND gate A1 are 1, therefore the output from this gate is 1. Success! If you
don’t believe me, check out figure 3.12 that shows the inputs to our first AND
gate - calculate the values of X, Y and Cin required to make the AND gate
output the value 1.

X Y Cin X Y Cin

N1

N2

N3

A1

Figure 3.12 Building the circuit for output S - the first AND gate
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We now follow this process for each of the four lines in the truth table from
figure 3.11 until we have the four AND gates correctly wired up to the input
lines.

The next task is to feed all outputs from the four AND gates into an OR gate
to get a single output. This circuit, shown in figure 3.13, correctly models the
truth table from figure 3.11. We won’t win any prizes with our implementation,
but it works!

X Y Cin X Y Cin

N1

N2

N3

A1

A2

A3

A4

O1

S

Figure 3.13 Building the circuit for output S

We are not finished yet, we need to follow the same procedure again to model
the truth table in figure 3.14 - which contains the parts of the whole truth table
from figure 3.10 that we are interested in in order to model the output Cout.
Check back to make sure you understand how the truth table in figure 3.14
was derived.
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10 1 1

1

1

1

1

1

0 1

1

0

1

1

1

YX Cin Cout

Figure 3.14 The truth table for output Cout

Once we’ve created our circuit using the same rules as before, to model the
output Cout, we end up with a diagram like figure 3.15.

A5

A6

A7

A8

N1

N2

N3

Y Cin X Y CinX

O2

Cout

Figure 3.15 Building the circuit for output Cout

Finally, to implement the complete circuit we can put the figures 3.13 and 3.15
together to get figure 3.16 - our finished circuit.
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X Y Cin X Y Cin

N1

N2

N3

A1

A2

A3

A4

A5

A6

A7

A8

S

O2

O1

Cout

Figure 3.16 Our finished circuit

3.4 Boolean Algebra

Our circuits follow the laws of boolean algebra, first discovered by (and named
after) George Boole in the nineteenth century. It wasn’t until the 1930s that
these laws were used to help design efficient electronic circuits.
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Boole’s algebra uses values than can either be true or false (or 1 or 0 as
we have been using in our truth tables) - in fact nowadays within the field

NOTES
George Boole was an
Englishman, he was born
in 1815 and died relatively
young in 1864. His ideas
were very advanced for his
time.

of computing a boolean variable is a variable that can be set only to either
boolean value, 1 or 0.

The rules of boolean algebra, for our needs, are actually very simple - they
contain only three different functions, AND, OR and NOT. Does this sound
familiar?

How we write these functions is shown in table 3.1.

Function Example Description
AND A · B Read this as A AND B.

Sometimes it’s written as
AB

OR A + B Read this as A OR B

NOT Ā Read this as NOT A

Table 3.1 The Functions of boolean algebra

Boolean algebra is perfect for describing our circuits, in fact we will shortly
return to the circuit in figure 3.7 to see how it can be described using boolean
algebra.

The set of rules that we can make use of are known as the identities of boolean
algebra. All the identities are shown in table 3.2. Each identity (apart from the
absorbtion and double complement) has two forms, one for the AND form, and
the other for the OR form.

We can draw a circuit for any of these identities to show that they are correct.
In fact, figure 3.17 shows a circuit to display the OR form of the associative
law.

From the diagram we can describe the outputs R1 and R2 as follows:

� R1 = x + (y + z);
� R2 = (x + y) + z.
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Law Identity
Absorbtion x · (x + y) = x

Associative x + (y + z) = (x + y) + z
x · (y · z) = (x · y) · z

Complement x + x̄ = 1
x · x̄ = 0

Commutative x + y = y + x
x · y = y · x

De Morgan’s Laws (x · y) = x̄ + ȳ

(x + y) = x̄ · ȳ
Distributive x + (y · z) = (x + y) · (x + z)

x · (y + z) = (x · y) + (x · z)
Dominance x + 1 = 1

x · 0 = 0

Double
Complement

(x̄) = x

Idempotent x + x = x
x · x = x

Identity x + 0 = x
x · 1 = x

Table 3.2 The Identities of boolean algebra

If we produced the truth table for both R1 and R2, we would find that both
outputs are identical for each set of inputs.

x zy

O1

O2

O3

O4

R1

R2

Figure 3.17 A circuit showing the associative law
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Let’s see boolean algebra in action, by describing the circuit in figure 3.7. Let’s
look at output S first.

� The output of AND gate A1 can be described as X̄ · Y ;

� The output of AND gate A2 can be described as X · Ȳ ;

� The output of OR gate O1 can be described as (X̄ · Y ) + (X · Ȳ );
� Therefore the output S = (X̄ · Y ) + (X · Ȳ );
� This form of expression is known as a sum of products.

Output C is easier to write down.

� The output of AND gate A3 can be described as X · Y ;

� Therefore the output C = X · Y .

There is another way to describe our circuits using the functions of boolean
algebra - in fact we’ve already seen this other method - it’s the use of truth
tables.

3.4.1 De Morgan’s Laws

I won’t dwell on all the identities shown in table 3.2, apart from one in partic-
ular that we can make use of in the creation of efficient digital circuits. These
particular identities are De Morgan’s Laws. Let’s look at the two identities for
this law again.

� (x · y) = x̄ + ȳ

� (x + y) = x̄ · ȳ

You can see that, for each identity, we can convert from using OR gates to
using AND gates. Why would we want to do this? The answer lies in table
3.3 - by converting our circuits to make use of NAND and NOR gates, we
can significantly reduce the number of transistors to build the circuit. So what?
Well, reducing the number of transistors required in a circuit lowers its cost
by a tiny amount (and could also cause a speed improvement), but when this
circuit is used a couple of million times in, say, the automotive industry, we can
make enormous cost reductions.
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Gate Number of transistors
AND 3
OR 3
NOT 1
NAND 2
NOR 2

Table 3.3 How many transistors to build a gate?

It is worth mentioning that an AND gate takes three transistors because it is
actually built of a NAND gate followed by a NOT gate - reducing our circuits
to sets of NAND gates can significantly reduce the amount of transistors we
need to use.

Reducing a sum of products expression describing a circuit to its most efficient
form can be done using a technique that makes use of Karnough maps. A

NOTES
An explanation of the use
of Karnough maps can be
found in [Cle00] and
[Gib84].

Karnough map can be used to reduce a sum of products expression with up
to four separate inputs by way of a pictorial description of the inputs. More
complicated techniques, such as the Quine/McCluskie method can be used
for greater numbers of inputs.NOTES

The Quine/McCluskie
method is described in
[MH00]. 3.5 Introducing Digital Works

Throughout this text, we’ll make use of a package called Digital Works. This
package not only lets us draw circuits, but also to ‘run’ them so we can see
what they do. The full description of how to use Digital Works is in Appendix
F, all we’ll do here is have a look at some example circuits that we’ve already
looked at - but this time we’ll be able to test them to see if they do what we
think they do.

3.5.1 Running Our First Circuit

First of all, we will run the first circuit we built - the circuit from figure 3.7. You’ll
find this circuit in a Digital Works file called halfadder.dwm on the CD in the
location

\examples\chapter03\halfadder.dwm

When you load this file into Digital Works, you’ll see something like figure 3.18.
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Figure 3.18 Our finished circuit in Digital Works

To run our circuit you need to:

� Click on the ’Run’ button (labelled in figure 3.18) - this will enable us to run
this particular circuit;

� Click on the ’Interaction’ button - when the mouse pointer is over the circuit
it should change into a hand with a pointing finger. This will allow us to
interact with our circuit;

� Click on input X, or more properly the interactive input button below the
X symbol (as shown in figure 3.19) - you should find that the output S
(shown connected to a simulated light emitting diode, or LED) should light
up. When the LED is lit, the output S is set to 1, and when it is clear, output
S is set to 0 - in fact we can see the truth levels of all the wiring too as a
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wire carrying a logical 1 is shown in black while a wire carrying a logical 0
is shown in grey.

Try changing the inputs and see what the outputs change to - this should
match completely the definition for this circuit in the truth table in figure 3.8.
And that’s it!

Figure 3.19 Our finished circuit in Digital Works, showing X = 1
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CHAPTER SUMMARY

Gate logic

� The fundamental gates are AND, OR and NOT. All other gates and circuits
can be constructed from these;

� These gates model the logical operations AND, OR and NOT as we
described in the previous chapter;

� Truth tables describe, given a set of inputs, the outputs for a given gate or
circuit;

� Circuits can be built that model truth tables, by modelling the minterms with
AND gates and feeding their outputs into an OR gate.

Boolean algebra

� Named after George Boole, boolean algebra can be used to describe cir-
cuits. The set of rules are known as the identities of boolean algebra, and
most laws have two forms - an AND and an OR form;

� De Morgan’s laws can be used to make circuits more efficient by reducing
the number of transistors used within a circuit.

Using Digital Works

� Digital Works can be used to draw and then simulate logic circuits.

SELF TEST QUESTIONS

1 Draw a circuit, using the methods described above, to meet the following
truth table.

R

0

0

0

0

1

1

1 1

X Y

1

0

0

1

2 Run the circuit in \examples\chapter03\assoc.dwm. This circuit
demonstrates the associative law - prove to yourself that the outputs
match as expected.

61



www.manaraa.com

Fundamentals of Computer Architecture

3 Run the circuit in \examples\chapter03\st3-3.dwm and write down the
truth table for this circuit. What task does this circuit do?

4 Draw a circuit within Digital Works to demonstrate the (x · y) = x̄ + ȳ
identity of De Morgan’s law.

EXERCISES

1 Draw a circuit within Digital Works to demonstrate the x · (x + y) = x
identity.

2 Draw a circuit within Digital Works to demonstrate the (x + y) = x̄ · ȳ
identity of De Morgan’s law.

3 Draw circuits within Digital Works to demonstrate the absorbtion and
idempotent identities.
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Registers

CHAPTER OVERVIEW

This chapter examines the use of registers and describes how they
can be built using gate logic.

This chapter includes:

� Bistables - the RS latch, the D latch and the D flip-flop;

� How to build a register;

� Tri-state logic;

� The concept of a clock and a clock cycle;

� Using registers in JASPer.

4.1 Introducing An Electronic Memory

So far we’ve looked at how to build up circuits to match truth tables, but we
haven’t looked at circuits to meet particular tasks. In this chapter we will look
at how we can build circuits to store bit patterns - these can then be used to
create larger storage elements such as registers (I’ll explain how to build these
soon) and whole computer memories (which I’ll describe in chapter 7).

To store a value we need a special circuit called a bistable, which means that
the output of such a circuit can be stable in one of two distinct states. The first
bistable we’ll look at (one that is at the heart of the other bistables that we’ll
make use of) is called the RS latch. It’s shown in figure 4.1 - and you can see
that it’s called the RS latch after its two inputs, imaginatively labelled R and S.
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Q

Q

NOR1

NOR2

R

S

Figure 4.1 The RS latch

We can see that the circuit has two outputs, Q and Q̄ - where Q̄ is the opposite
of Q, with one notable exception, so we are only really concerned with the
output Q.

Let us look at the use of the RS latch. The R stands for Reset, and when we
set R to 1, Q is set to 0; when S (which stands for Set) is set to 1, then Q
is set to 1. If both S and R are set to 0, then the value of Q will be left at
whatever it was last set to. This is important - effectively the circuit remembers
whether the last operation was ‘Set’ or ‘Reset’. In other words, the RS latch
will successfully store 1 bit of information as long as it is powered. Don’t take
my word for it, try running the file:

\examples\chapter04\rslatch.dwm

in Digital Works to see the operation of an RS latch first hand. The operation
of the RS latch is described in table 4.1.

R S Description
0 0 Q is left at what it was pre-

viously set to
0 1 Q = 1
1 0 Q = 0

1 1 Q = Q̄ = 0

Table 4.1 The Truth table for the RS latch

However, the RS latch isn’t perfect - in fact it has a particular failing that could
cause us problems - what happens when both R and S are set to 1? We can
see that within the truth table we can see that when both inputs are set to 1,
then both Q and Q̄ are set to 0. Apart from indicating that for this case the
traditional labels are incorrect (some texts treat the outputs as Qa and Qb),
if both inputs are simultaneously set to 0 the outputs are then undefined. Q
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will jump to either 0 or 1 (with Q̄ now correctly being the opposite of Q). It is
impossible to predict which state Q will take after both inputs have been 1, as
it depends so much on the speed of the individual gates. This circumstance is
something we need to guard against, so we need to add a few new gates to
our RS latch to produce a new circuit called the D latch.

D

C

Q

Q

N1 A1 NOR1

NOR2
A2

Figure 4.2 The D latch

The D latch is shown in figure 4.2. It’s called a D latch because the key input
is now D (which stands for Data) You can see that it still has an RS latch at its
heart, but we’ve added two features:

� The D input now goes (via AND gates that we’ll talk about in a moment)
to both NOR gates - with one input being inverted with a NOT gate. Effec-
tively, D takes the place of both the R and S inputs to the RS latch, so now
the condition R = S = 1 of the RS latch cannot occur.

� We have added an extra input called the C input (the C stands for Clock -
we’ll discuss what we mean by a clock later). We can see that for the input
value D to reach the NOR gates the C input has to be set to 1 (because of
the AND gates).

You can check out the use of a D latch in the example:

\examples\chapter04\dlatch.dwm

Try updating the output Q by changing the inputs to the D latch with this
example:

� Set D to 0;

� Set C to 1;

� Set C back to 0;

� Q should now be set to 0;

� Set D to 1;
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� Q is still set to 0;

� Set C to 1;

� Set C back to 0;

� Q should now be set to 1.

The truth table for the D latch is shown in table 4.2.

D C Description
0 0 Q is left at what it was pre-

viously set to.
0 1 Q = 0
1 0 Q is left at what it was pre-

viously set to.
1 1 Q = 1

Table 4.2 The truth table for the D latch

Finally, we are getting to a circuit that we can make use of to build storage
devices for our processor, there is only one minor change that we want to
make - and that’s to do with how we make use of the C input. So far, when we
set the C input to 1, any changes we make to D will be reflected in the output
Q - so what we want to do is limit the time that the C input is set to 1 (we will
see why later), and we can do that with one more minor update to our D latch
- to create a circuit called a D flip-flop. The D flip-flop is shown in figure 4.3.

Q

Q

N1 A1 NOR1

NOR2
A2

C

D

A3N2

Figure 4.3 The D flip-flop

The only change we’ve made is to add an extra NOT gate to the C input line,
that routes C and C̄ into the AND gate A3. At first glance you would think that
such a circuit wouldn’t work - as passing 0 and 1 into an AND gate will always
result in a 0 - hence it looks like the C input to the rest of the circuit will always
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be 0, which as we’ve seen in table 4.2 should mean that the output Q could
never change. However, the circuit in figure 4.3 does work - due to a property
of real logic gates called latency.

Latency is essentially how long it takes for an input signal to a gate to propa-
gate, or transmit energy, through the gate and to set the output. The electronic

NOTES
So, a D latch will pass the
D input to the Q output as
long as C = 1. A D flip-flop
will only allow the D input
to affect the Q output for a
brief moment as the point
C changes from 0 to 1 -
this is called ‘edge
triggered’, and will be
discussed later.

signal from C reaches the gate A3 at something like half the speed of light,
whereas the signal passing through the NOT gate N2 takes longer (only very
slightly longer!) due to the latency of that gate - so, for a very brief time period,
the output of the AND gate A3 will be set to 1 before it is set to 0 (as the signal
has passed through the NOT gate such that the inputs to the AND gate are
now 1 and 0).

As D flip-flops are so common, we have a special way of drawing them in a
circuit, shown in figure 4.4. The triangle at the C input indicates that the clock
is a positive edge trigger - more on what is meant by edge triggering later.

Q

Clear Preset

C
D

Q

Figure 4.4 The symbol for a D flip-flop

Figure 4.4 indicates the practical addition of two further connections to the D
flip-flop. The Clear and Preset connections to the D flip-flop can be used to
set the output Q to either 1 or 0. Setting the Clear line high will set the output
Q to 0, while setting the Preset line high will set the output Q to 1.

4.2 Building A Register

Now we have our memory elements in the form of D flip-flops, we can build
registers. A register is a finite storage element in a processor. We’ll start off by
building a 4-bit register, and then show how we can build a 16-bit register for
use in our processor.

A 4-bit register consists of four D flip-flops wired as you can see in figure 4.5.
The inputs consist of four data values labelled from D0 to D3 and the C input
for the clock. The C input is wired to all the C inputs on the flip-flops, so that
they can all be triggered at the same time. Getting back to the data inputs, D0
will be the least significant bit (LSB, the rightmost bit in the number) moving
up to the most significant bit (MSB, the leftmost bit in the number) in D3. If we

67



www.manaraa.com

Fundamentals of Computer Architecture

wanted to store the value 1210 (11002) we would store the bits as in table 4.3.
The outputs to the circuit, R0 through to R3 are the outputs from our register -
these outputs show the value we have stored in our register.

Input Value
D0 0
D1 0
D2 1
D3 1

Table 4.3 Storing a 4-bit number in our register

R0

R1

R2

R3

Q
C
D

Q
C
D

Q
C
D

Q
C
D

Q

Q

Q

Q

C

D0

D1

D2

D3

Figure 4.5 A 4-bit register

So, assuming that the bit pattern to be placed inside the register is on the data
lines (inputs D0 to D3), all we have to do is clock the register for it to store the
bit pattern from the data lines in the register.

Creating a 16-bit register is a simple matter of scaling up the 4-bit register,
as shown in figure 4.6. The 16-bit register has 17 inputs, the data inputs D0
to D15 and the C input (wired to all the C inputs of each D flip-flop). The
outputs, R0 to R15, again show the value we have stored in our register, and
if we wanted to use the value from our register (to store it in another register
perhaps) it is these wires that we would connect to. From here on in, we will
just use diagrams of 4-bit registers to understand their workings, as you can
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see that if we were to use 16-bit registers in all diagrams, the diagrams could
get unnecessarily complicated!
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Figure 4.6 A 16-bit register

69



www.manaraa.com

Fundamentals of Computer Architecture

We still can’t wire our registers together, as we’ll need to in our processor to
transfer values between registers, but that will be covered next.

4.3 Tri-state Logic

To wire our registers together, so that we can pass values between them, we
need to introduce a new form of gate called a tri-state gate, the symbol of
which is shown in figure 4.7.

X REn

0 0

0

0

1

1

1 1

0

1

-

-

En

RX

Figure 4.7 A tri-state gate

The tri-state gate has two inputs, X and En and one output called R. This type
of gate has a very special purpose - to connect or disconnect the input X to the
output R. It does this by using the En input, which stands for enable. When En
= 1 the input X is directly connected to the output R, effectively we can think
of the gate in this state as being exactly the same as a straight piece of wire -
R has the same value as X. However, when En = 0 something totally different
happens - effectively X and R are disconnected from each other, whatever
value X takes, R is not affected in any way. In fact it would be wrong to attempt
to measure the value of R in this state, it could be 0 or it could be 1 - this state
is called floating.

Why would we want such a gate? We need sets of such gates to allow us to
connect a number of registers to the same set of wires, so we can transfer
values between the registers. We call this set of wires a data bus and we’ll talk
about the data bus itself in chapter 6. If we didn’t make use of tri-state logic to
connect our registers to the data bus, then we might have a situation whereby
one register tries to put the bit pattern 10002 onto the data bus, whereas an-
other register might put the bit pattern 01112 on to the data bus. What would
happen? We have no way of knowing what the value on the bus will become, it
could be set to 01112, 10002 or something totally different. The act of attempt-
ing to have two registers (or any other component) place different bit patterns
on the data bus is called bus contention and it’s something we avoid by using
tri-state logic.
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Look at figure 4.8. In this diagram we have wired up two registers to the data
bus and we want to copy a bit pattern from register 1 to register 2. How do
we do this? Let’s assume that register 1 contains 00112, so the flip-flop F1
contains the bit value ‘1’, F2 contains ‘1’, F3 contains ‘0’ and F4 contains ‘0’.
Check the diagram to see if you agree with me. To move this value to register
2 we need to do the following:

� Set the register 1 OE line to 1. OE stands for output enable - in other words
we have enabled the tri-state gates connected to the outputs of register 1,
so that the value from register 1 is now on the data bus wires.

� We now set register 2 C line to 1. This is the clock line for register 2, which
when set allows the flip-flops in this register to take the value from the data
bus - in other words, we have transferred the value to register 2.

� Lastly, we set register 1 OE line back to 0, to disconnect the flip-flops of
register 1 from the data bus.

Data Bus
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Figure 4.8 Copying bit patterns between registers

You can use the Digital Works example at

\examples\chapter04\4bitregister2.dwm

to try copying bit patterns between registers yourself (a screen shot of this
example is in figure 4.9). Note that the Digital Works version of this circuit has
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two minor differences from the diagram in figure 4.8. These are that interactive
buttons are connected to the set and preset inputs of the flip-flops to allow easy
setting of values for the registers, and that LEDs have been connected to the
flip-flop outputs to more easily see the value they store.

Try the following with this circuit:

� Use the interactive inputs on the flip-flops to store a value in register 1;

� Click on the OE of register 1 (tri-state gates now enabled);

� Click on the C of register 2 (bit pattern taken from the bus into register 2);

� Click on the C of register 2 again, to set it back to 0;

� Click on the OE of register 1 again, to set it back to 0;

� You’ve now successfully completed the transfer of the register 1 bit pattern
to register 2.

Figure 4.9 Copying bit patterns between registers - the Digital Works example
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Try setting the OE line to 1 for both registers while running the circuit - you can
see how Digital Works points out that you have a bus contention issue. A real
circuit would continue running, with the value on the bus being indeterminate.

We still have some work to do. The 4-bit registers in figure 4.8 have ten con-
nections, six of these are inputs (C, OE and D0 to D3) and four are outputs
(B0 to B3). By moving the tri-state logic inside the registers, we can reduce the
number of connections to six for our registers, (C, OE and D0 to D3). This re-
finement is shown in figure 4.10, along with an additional connection, ‘Reset’,
making a total of seven connections. The improvements that we have made
are:

1 The register only requires connection to the bus four times, using D0 to D3.
We can read the values on the bus through these connections to set the
register (by setting C), and we can put the value stored in this register onto
the bus through these connections (by setting OE);

2 We have also added a ‘Reset’ line into our register and with this we can
set the value of the register to 0 just by setting the Reset line to 1 (as
the reset line is connected to all the reset lines of each flip-flop inside the
register). Strictly speaking, we don’t need this feature in our register, but it
aids practical use of the register.
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D3

F1
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F3

F4

Q
C
D

Q
C
D

Q
C
D

Q
C
D

Q

Q

Q

Q

Reset

C
OE

4-bit Register

Figure 4.10 A further refinement to our register
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Now that we understand fully what is going on inside our registers, it makes
sense to use a symbol to represent them, to aid the clarity of our circuits. The
symbols for a 4-bit and a 16-bit register are shown in figure 4.11.

Output Enable

Clock

D0

Reset

D3

Output Enable

Clock

D0D15

Reset

16-bit Register

4-bit Register

Figure 4.11 Symbols for registers

Using these symbols, we can now refine the earlier figure showing registers
connected to a bus to that shown in figure 4.12.

D0

D3

COE OE C

Register 1 Register 2

4-bit Register4-bit Register

Reset Reset

Figure 4.12 Copying bit patterns between registers, a refinement

To move a bit pattern from register 1 to register 2 we would do as before:

� Set register 1 OE to 1 (bit pattern now on the bus);

� Clock register 2 (for register 2 to take the bit pattern from the bus);

� Set register 1 OE to 0;
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All transfers of bit patterns from one register to another take this form. We
call the act of copying data from one register to another a data movement,
even though the first register is left with the same contents as before the data
movement.

4.4 Introducing The Clock

We’ve sometimes talked about a clock input to our circuits, and now it’s time
to explain what we mean by this. Also, we’ll describe something related called
the clock cycle.

We need a clock to synchronize all the components of our processor. It would
be no good if we wanted to transfer a bit pattern from one register to another,
if the second register doesn’t access the data bus at the right time, to take the
data put there by the first register. Our processor needs order.

We use a clock line in our processor that, like the ticking of a clock (actually
produced by an oscillating crystal), sends out a signal that looks like that in
figure 4.13. The amount of time between the clock pulse changing from 1 to
0, and that from 0 to 1 is the same. The speed of the clock is often used in
advertisements for computers as a measure of how fast a computer is (it’s not
the only factor deciding how fast the computer is, but it’s the simplest for a
computer novice to recognize) - clock speeds can be anything from 1 MHz to

DEFINITION
1 MHz : 1 megahertz - 1
million cycles per second. 1 GHz and higher.

DEFINITION
1 GHz : 1 gigahertz - 1
thousand million cycles per
second.

1 clock cycle is where the signal changes from 0 to 1, and then back to 0,
probably best understood from figure 4.13.

Logical 1

Logical 0

Rising Edge Falling Edge

1 Clock Cycle

Time

Figure 4.13 The clock cycle

Just because we call an input to a register the clock line, doesn’t necessarily
mean that it is connected to the processor clock - it just indicates that the
clock line is used to trigger the register in some way. Clock lines for registers
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are actually triggered by part of the circuit that defines the control unit - we’ll
describe that in chapter 17, and see that the control unit needs to make use
of the clock.

There are effectively four different types of trigger. These are:

� 1 triggered - when the clock signal becomes 1;

� 0 triggered - when the clock signal becomes 0;

� Positive edge triggered - when the clock signal changes from a 0 to a 1;

� Negative edge triggered - when the clock signal changes from a 1 to a 0.

A D latch is triggered (and stays active) when its C line is set to 1, whereas a
standard D flip-flop triggers on a positive edge. Triggering on an edge is better
than triggering on a particular value, as an edge transition happens for only a
tiny amount of time and can be used for very accurate timing.

4.5 Using Registers

Let’s have a look at the registers in JASPer. There are 12 of them, as you
can see in figure 4.14. The registers in JASPer have their current contents
displayed in them, and most register contents are displayed as hexadecimal
- all apart from the PSR which is shown in binary. All of the JASPer registers
are 16 bits wide. Don’t worry just yet about the register names - we’ll cover
their individual usage in chapter 8.

We can easily put values in the JASPer registers and move the values from
one register to another.

To put a value in a JASPer register, click on ‘processor/registers’ and use
the dialogue box (as shown in figure 4.15) to enter the values you want to
store. When you click on the ‘OK’ button, provided the values you entered
were perfectly reasonable 16-bit values in a hexadecimal representation, you’ll
see the registers change in the main display. To move a bit pattern from
one register to another, we can use a set of commands that the processor
understands that are accessed from ‘processor/microcode list/data move-
ment’. These commands are specified in a language called Register Transfer
Language (RTL).

In RTL the destination is given first followed by a left pointing arrow and then
the source register. Each data movement can be described using RTL, so for
example, the data movement from the MDR register to the A register can be
described as:

A←[MDR]
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The brackets mean contents of. So read this RTL instruction as ‘move the
contents of the MDR register to the A register’.

Figure 4.14 Another look at JASPer

Try a few data movements for yourself and see what they do - you’ll see the
data movement animated on the screen for you.

Now that we’ve looked at the view of JASPer and moved some data values
between registers, we can see that if JASPer were a real processor then
the electronic circuitry in the registers would match everything that we’ve
described in this chapter - no magic required!
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Figure 4.15 The JASPer registers dialog box

CHAPTER SUMMARY

Bistables

� The RS latch can store 1 bit of data, but it has an issue whereby if
both inputs are set to 1 and then simultaneously reset, the output Q is
unpredictable;

� The D latch is an update to the RS latch to ensure that the RS latch will
never have both inputs set to 1;

� The D flip-flop is an advancement on the D latch that is edge triggered.

Building registers

� Registers can be built from sets of D flip-flops;

� The clock lines to each flip-flop are wired to the same clock input;

� To store an 8-bit value, the register must have eight flip-flops, while a 16-bit
register requires 16 flip-flops, etc.

78



www.manaraa.com

Registers

Tri-state logic

� A tri-state gate can be used to disconnect parts of circuits from each other;

� When the En line is set to 1, a tri-state gate places its input on its output.
When the En line is set to 0, a tri-state gate disconnects its output from its
input;

The clock cycle

� The clock cycle is used to synchronize components;

� The clock is driven by an oscillating signal;

� The clock can trigger components - these triggers can be 1, 0, positive
edge or negative edge.

Registers in JASPer

� Registers in JASPer are all 16 bits wide;

� Data movements between registers are described with RTL.

SELF TEST QUESTIONS

1 How can we write in RTL a description of moving a data value from the
PC register to the MAR register?

2 Run the circuit \examples\chapter04\dlatch.dwm. Firstly, set the
output Q to 1, then set the output Q to 0.

3 Run the circuit \examples\chapter04\dflipflop.dwm. Firstly, set the
output Q to 1, then set the output Q to 0.

4 Describe the key difference between using a D flip-flop and using a D
latch.

5 Run the circuit \examples\chapter04\4bitregister.dwm. Store the
bit pattern 10102 in the register.

6 Using \examples\chapter04\bitregister2.dwm, first store the bit
pattern 10112 in register one, and then transfer the value to register two.

EXERCISES

1 Using \examples\chapter04\bitregister2.dwm, first store the value
11002 in register two, and then transfer the value to register one.

2 Using JASPer, place the value 123416 in the MDR register. Transfer
the value from the MDR register to the A register. Describe this data
movement using RTL.
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3 Using JASPer, place the value F0DA16 in the B register. Transfer
the value from the B register to the MAR register. Describe this data
movement using RTL.

4 Using JASPer, place the number $97 into the CU, set the animation op-
tion to a very slow rate and then hit the ‘execute’ button. Write down the
sequence of data movement operations that you see executed.
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The ALU

CHAPTER OVERVIEW

In this chapter we discuss the uses of the ALU and show how ALU
functionality can be built from gate logic.

This chapter includes:

� The role of the ALU and PSR within the processor;

� The control circuitry of the ALU;

� Adder circuits - the half adder and the full adder;

� Building circuits to demonstrate the functionality of the ALU - the
ADD, SL and NEG circuits;

� Using the ALU in JASPer.

5.1 About The ALU

The ALU, or Arithmetic Logic Unit, is a processor’s calculator - and without it
the processor could not do many useful tasks at all. In this chapter I’ll describe
the sort of operations provided by an ALU, look at how to build a selected few
of these operations from gate logic, and then look at the ALU in JASPer.

The typical symbol for an ALU is shown in figure 5.1. Essentially, the ALU
consists of three registers, the ALUx and ALUy (which are used as inputs
to the ALU), the ALUr (which contains the result when an ALU operation is
executed) and some special circuitry to execute the ALU operations. Although
strictly speaking not part of the ALU, the PSR (Processor Status Register ) is
also required both to aid the functionality of the ALU but also to help control
the processor.
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ALUx ALUy

ALUr

PSR

Figure 5.1 The ALU and PSR symbols

The ALU, as its name implies, executes arithmetic and logical operations. The
sort of arithmetic operations include binary addition and subtraction (as we
saw in chapter 2), and the logical operations including AND, OR and NOT as
we discussed in chapters 2 and 3.

The ALU and PSR in JASPer are shown in figure 5.2.

Figure 5.2 The JASPer ALU and PSR

Some ALUs can also cope with floating point numbers, which is how we can
represent numbers such as 3.14 or 1.563 × 1028, but many small processors
don’t have an ALU that can use floating point numbers. We’ll not include this
functionality in our processor design.
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5.1.1 The Role Of The PSR

We can see the PSR included in figure 5.1. It serves the purpose of helping
us keep track of what is happening inside the processor. As we’ve mentioned
before, PSR stands for Processor Status Register. Although we call it a reg-
ister, we don’t quite use it in the same way as other registers - we tend just
to use parts of the register bit pattern at a time, and it would be implemented
differently from the way we built our registers in chapter 4 - largely because
we use individual bits from the PSR rather than the complete bit pattern. The
PSR actually contains a broad range of information, various parts of its con-
tents are used for a whole variety of tasks - we put all of this together into the
one register so we have all the processor status information in the one place.

In our discussion of the ALU, the only part of the PSR that we are interested in
are the V, N, Z and C flags - I’ll describe the meanings of each of these shortly
and leave the other parts of the PSR to later chapters.

Firstly, why do we call these parts of the PSR flags? A flag tells us something
about the ALU operation - in fact each of the V, N, Z and C flags tell us about
the contents of the ALUr after an arithmetic or logical operation has been
executed. Each of these flags is listed in table 5.1.

NOTES
The ALU flags C, N, Z and
V are affected by every
ALU operation. They can
then be used to control the
operation of the processor.

Flag Name Meaning when the bit is set to 1
V Overflow The last ALU operation resulted

in a 2’s complement overflow -
in other words, the ALUr wasn’t
large enough to store the result.
We use a ‘V’ to represent over-
flow instead of ‘O’ as that could be
mistaken for a binary zero.

N Negative The last ALU operation resulted
in a bit pattern that represents a
negative value in the ALUr.

Z Zero The last ALU operation resulted in
a bit pattern that represents a zero
value in the ALUr.

C Carry The last ALU operation resulted in
a carry being generated.

Table 5.1 The PSR ALU Flags
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5.2 Inside The ALU

Let’s take a first look inside our ALU in figure 5.3. You can see that it contains,
as we said, the ALUx, ALUy and the ALUr, as well as the circuitry to perform
the arithmetic and the logical operations. Note that in our simple processor,
these registers are 16 bits wide, but the registers and buses are shown as 4
bits wide in the diagram to reduce clutter.

The ALU registers are actually connected to the data bus by a unit labelled
the ALU data bus connection circuitry because at times we need to isolate
the ALU from the other components on the data bus. This circuitry consists
of some tri-state gates connecting the ALUx, ALUy and the ALUr to the data
bus - it can be activated by signals on the ALU data bus lines. A 2-bit code
is used to either connect the ALUx, the ALUy or the ALUr to the data bus, or
to disconnect all from the data bus. We don’t need to discuss the connection
circuitry any further to understand the workings of the ALU.
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Figure 5.3 Inside the ALU
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Code Operation RTL Description
0000 ADD ALUr=[ALUx]+[ALUy] Perform a 2’s complement ADD operation,

adding the ALUx and ALUy bit patterns to-
gether and storing the result in the ALUr
register

0001 ADC ALUr=[ALUx]+[ALUy]+[PSR(c)] Perform a 2’s complement ADC operation,
adding the ALUx and ALUy and C flag to-
gether and storing the result in the ALUr
register

0010 SUB ALUr=[ALUx]-[ALUy] Perform a 2’s complement SUB operation,
subtracting the ALUy from the ALUx bit
pattern and storing the result in the ALUr
register

0011 SL ALUr=[ALUx]<<1 Perform a logical shift left on the ALUx,
storing the result in the ALUr

0100 SR ALUr=[ALUx]>>1 Perform a logical shift right on the ALUx,
storing the result in the ALUr

0101 AND ALUr=[ALUx]&[ALUy] Perform a logical AND operation on the
ALUx and ALUy bit patterns and storing the
result in the ALUr register

0110 OR ALUr=[ALUx]|[ALUy] Perform a logical OR operation on the ALUx
and ALUy bit patterns and storing the result
in the ALUr register

0111 NOT ALUr=~[ALUx] Perform a logical NOT operation on the
ALUx and storing the result in the ALUr
register

1000 NEG ALUr=~[ALUx]+1 Perform a 2’s complement negative opera-
tion on the ALUx and storing the result in
the ALUr register

1001 INC ALUr=[ALUx]+1 Add 1 to the ALUx bit pattern, storing the
result in the ALUr

1010 DEC ALUr=[ALUx]-1 Subtract 1 from the ALUx bit pattern, storing
the result in the ALUr

1011 SWAP ALUr(7:0)=[ALUx(15:8)];
ALUr(15:8)=[ALUx(7:0)]

Swap the most significant byte and the least
significant byte of the ALUx, storing the
result in the ALUr

1100 MUL ALUr=[ALUx]*[ALUy] Multiply the ALUx value by the ALUy value,
storing the result in the ALUr

1101 DIV ALUr=[ALUx]/[ALUy] Divide the ALUx value by the ALUy value,
storing the result in the ALUr

1110 MOD ALUr=[ALUx]%[ALUy] Divide the ALUx value by the ALUy value,
storing the remainder in the ALUr

Table 5.2 The ALU Operations
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Let’s start off by defining the operations that we want our ALU to perform. We
need it to perform addition and subtraction, logical operations (AND, OR and
NOT), as well as multiplication and division.

It is worth noting that the logical operations work in exactly the same way
as when we covered this topic in chapter 3. For example, an AND operation
on two 16-bit representations would perform an AND on the LSBs of each
number, then the second to right bits, etc.

Table 5.2 describes the sort of operations we want to implement - we have
allocated a 4-bit binary code to each that we can use later as the control
signal to the ALU to perform that operation.

As you can see, we aren’t using all the possible control codes from the ALU
control signal, 11112 is unused.

Activity in the ALU is controlled by a set of control lines, and as we aren’t
going to have much functionality in our ALU, four lines are enough to control
it. This means that we can have a maximum of 16 distinct operations defined
(because we can count from 0 to 15 in four bits). If we take a look inside the
circuitry that performs the arithmetic and logical operations, we can see (in
figure 5.4) that one part of the circuit is used to decode the ALU control signal,
and the rest is taken up by individual units to perform each ALU operation.

Please note that if we were to look inside an ALU of a real processor - it
wouldn’t look like this, as there are many improvements that we could make
in order to make the functionality much more efficient. However, as we said
before, we aren’t concerning ourselves with building the most efficient circuits,
instead we want to build circuits that are more easily understood.

For clarity, figure 5.4 only shows one line for each ALUx and ALUy input and
yet already we are getting the idea that most of our processor is made up of
wires connecting each part of a circuit with other parts! This is actually quite a
problem in creating real microprocessors - because it’s very difficult to design
a layout to give this connectivity that can easily be built.

5.2.1 Decoding The ALU Control Signal

To decode the control signal, we make use of a special sort of circuit called a
decoder shown in figure 5.5. This circuit takes the 4-bit ALU control code and,
using an AND gate for each possible input value, ensures that only one AND
gate can produce a 1 value at a time. The output from each AND gate can
then be used to activate one particular arithmetic or logic operation.
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Figure 5.4 Inside the ALU arithmetic and logic circuit
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Figure 5.5 Inside the ALU control signal decoder

For example, the control signal 0011, would have the individual control lines
set as follows:

� A = 0;

� B = 0;

� C = 1;

� D = 1;
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This would result in the AND gate labelled as 0011 being the only AND gate
to produce the output one, all other AND gates would produce a zero.

We are only using the first 15 codes for the functionality discussed in table 5.2,
so we wouldn’t connect the output for the AND gate that would be activated
for the bit pattern 11112.

5.3 Adder Circuits

Let’s start off by seeing how we would build a circuit to perform 2’s complement
arithmetic - to do this we will introduce two circuits that we will need to make
use of. Firstly, we’ll take a look at something called a half adder , then we’ll
move on to a circuit called a full adder , then after that we have all the building
blocks we need to build the complete ADD circuit.

5.3.1 Introducing The Half Adder

Back in chapter 2 we described how we could add two binary numbers to-
gether - and we, at first glance, could use half adders to implement this form
of addition. The half adder takes two inputs, X and Y, and gives two outputs,
S (the sum) and C (the carry) and its truth table can be seen in figure 5.6. We
can use the method that we described in chapter 3 to draw a circuit for a half
adder - in fact the complete circuit is shown in figure 5.7. Does it look familiar
in any way? It should, this is the first circuit we actually created back in chapter
3 in figure 3.7.

Y

0

0

0 0

0

1

1

1 1

X CS

0

0

0

10

1

1

Figure 5.6 The truth table for the half adder

We make use of a half adder so much when building arithmetic circuits that it
even has its own symbol, shown in figure 5.8.

89



www.manaraa.com

Fundamentals of Computer Architecture

X Y

S

C

N1

N2

A1

A2

A3

O1

Figure 5.7 The half adder circuit

Check out the usage of a half adder in the Digital Works example in

\examples\chapter03\halfadder.dwm

Half Adder

X Y

SC

Figure 5.8 Symbol for a half adder

However, the half adder does have one weakness. What happens if we want
to add X and Y together with a carry input, as we needed to fully perform our
binary addition in chapter 2? Quite simply, we can’t as we only have two inputs
to our half adder - and this is where the full adder comes in.

5.3.2 Introducing The Full Adder

We need the full adder, because as we saw in chapter 2, we need to be able
to also add in a carry to perform full binary addition. The full adder takes three
inputs, X, Y and the Cin (which means the carry in) and gives two outputs,
S (the sum) and Cout (the carry out) and its truth table can be seen in figure
5.9. Once again, it’s possible to work out the circuit from this truth table - the
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circuit is shown in figure 5.12 (it too should be familiar, as this is the more
complicated circuit we drew in chapter 3 in figure 3.16).
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X C Cin out

Figure 5.9 The truth table for the full adder

X Y Cin

SCout

X Y

C S

X Y

C S

Half Adder 1

Half Adder 2

Figure 5.10 Building a full adder from half adders

As an aside, it’s worth mentioning that it’s also possible to build a full adder
using two half adders - this method is shown in figure 5.10.
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Check out the usage of a full adder in the Digital Works example in

\examples\chapter03\fulladder.dwm

We make use of a full adder so much when building arithmetic circuits that it
too has its own symbol, shown in figure 5.11.

C

out

in

Full Adder

X Y

SC

Figure 5.11 Symbol for the full adder

5.4 Building An ADD Circuit

Now we know how full adders work, we can actually start to build a circuit to
perform binary addition. Take a look at figure 5.13 - it looks complicated at
first, but I’ll break it down so we can understand what it does.

Firstly, take a look at the row of full adders, there are a few points for you to
take note of:

� Each full adder, looking at them from right to left, performs the addition for
part of the two inputs from the ALUx and the ALUy;

� The first (from right) full adder adds bit 0 (the LSB) of the ALUx and the
ALUy, together with a Cin of 0. We know it’s 0 because the Cin input is
connected to a symbol made up of three horizontal parallel lines - this is a

NOTES
The ADC circuit would
differ from the ADD circuit
in only one way - rather
than the full adder that
adds the LSBs of ALUx
and ALUy having it’s Cin

wired to a logical 0, it
would be wired to the C
flag of the PSR.

symbol for ‘ground’, which we can interpret as indicating a logical 0 value.
We could have actually used a half adder here, but often circuits are built
from similar components to simplify the build process;

� The second full adder adds bit 1 of the ALUx and the ALUy, together with
the carry bit generated from the first full adder, and so on;

� The S bits from each full adder are connected, by tri-state logic enabled
by the En line (from the ALU control signal decoder that we saw in figure
5.5), to the output ALUr;

� The final carry, generated by the left most full adder is used to set the C
flag in the PSR.
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Figure 5.12 The full adder circuit

You can see that, not only does the circuit output the ALUr value, but it also
outputs the PSR flags. For the ADD operation, the flags are set as in table 5.3.

It is worth noting that the circuitry to set the V flag looks complex, but actually
it checks to see if the sign bit indicators of each bit pattern to be added are
the same, and if so, if the sign indicator of the result is different (indicating
overflow).
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ALUx ALUy

ZNC V

En

ALUr

Full Adder
X Y Cin

Cout S

Full Adder
X Y Cin

Cout S

Full Adder
X Y Cin

Cout S

Full Adder
X Y Cin

Cout S

Figure 5.13 Inside the ALU ADD circuit

Flag Description
Z If (ALUr=0) then Z=1 else Z=0
N N = MSB(ALUr)
V If (2’s complement overflow) then

V = 1 else V=0
C If (carry from MSB of addition)

C=1 else C=0

Table 5.3 The PSR flags after the ADD operation

For the ADD circuit to update the PSR and ALUr values, you can see that the
En (enable) line needs to be set to 1 - this is the input from the ALU control
signal decoder. In other words, the ADD circuit is used if the code for ADD is
fed into the ALU arithmetic and logic circuitry on the ALU control lines.
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5.5 Building An SL Circuit

Next, we can build a circuit to perform a logical shift operation - we’ll build the
functionality of the SL, or shift left, circuit. This circuit, shown in figure 5.14
does two things, firstly it takes the input from the ALUx, performs a logical left
shift operation, storing the result in the ALUr and secondly it also sets the PSR
flags, depending on the result of the operation.

ZNC

En

ALUr

ALUx

V

Figure 5.14 Inside the ALU SL circuit

The shift left operation is where each bit of the ALUx value is shifted one place
to the left, bit 0 of the result is set to 0, and the MSB from the ALUx is moved
into the C flag of the PSR. This functionality is shown in figure 5.15 - the top
diagram shows how the result is a shifted version of the initial value, with the
LSB becoming 0 and the original MSB moving to the C flag of the PSR (the
bottom diagram shows the same thing but in a more concise manner - this
type of diagram is popular in many processor manuals). The PSR flags for this
operation are not set quite as for the ADD operation, as shown in table 5.3.
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01 1 00

1 1 0 00

1 1 00 0C

Result

Inital Value

C

Figure 5.15 The functionality of the SL circuit

Once again, the En line is used to set the ALUr value and the PSR flags. The
PSR flags after the SL operation would be set as in table 5.4.

Flag Description
Z If (ALUr=0) then Z=1 else Z=0
N N = MSB(ALUr)
V V=0
C If (carry from MSB of addition)

C=1 else C=0

Table 5.4 The PSR flags after the SL operation

It is worth noting that a shift left operation is equivalent to multiplying the
contents of the ALUx by two. In early processors that couldn’t perform mul-
tiplication, shift left operations were used as a poor man’s multiplication. For
example, if you wanted to multiply a value by nine, you would have had to
write your program to perform a shift left operation three times (equivalent to
multiplying by eight), followed by adding in the original value. This would have
been faster than merely adding the number to itself eight times over.

5.6 Building A NEG Circuit

The last circuit we’ll build is the NEG circuit - which computes the 2’s
complement of the value stored in the ALUx.
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En

ZNC ALUr

ALUx

V

Full Adder
X Y Cin

Cout S

Full Adder
X Y Cin

Cout S

Full Adder
X Y Cin

Cout S

Full Adder
X Y Cin

Cout S

Figure 5.16 The functionality of the NEG circuit

The state of the flags after a NEG operation will be as shown in table 5.5.

Flag Description
Z If (ALUr=0) then Z=1 else Z=0
N N = MSB(ALUr)
V If (2’s complement overflow) then

V = 1 else V=0
C If (carry from MSB of addition)

C=1 else C=0

Table 5.5 The PSR flags after the NEG operation
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The complete circuit is shown in figure 5.16 - and once again the value of
ALUx is used to calculate the ALUr, and the PSR flags are set on the result.

This circuit could have used half adders instead of full adders, but full adders
have been used to aid a comparison to the previous circuits.

5.7 Using The ALU In JASPer

We could carry on producing diagrams for every single ALU operation but it
would get quite tedious and we wouldn’t see anything greatly different to what
we’ve seen in creating the ADD, SL and NEG circuits. Instead let’s take a look
at JASPer and see how we can perform these operations in the JASPer ALU.

In the standard ‘black box’ view of JASPer we see the ALU as an integral part
of our CPU. To perform any ALU operations use the ‘processor/ALU’ menu
option (or use the ALU menu button).

Let’s perform the 2’s complement addition of $00D0 and $0013.

� Before we execute an ALU ADD instruction we need to first put the re-
quired values into the ALUx and the ALUy. To do this we can use the
‘processor/registers’ menu option (or click on the registers menu button)
- fill in the ALUx and ALUy values. Once you click ‘OK’, you can see that
the ALUx and ALUy values have been updated in the main display;

� Now select the ‘processor/ALU’ menu option and then click on the ‘add’
button in the ALU dialog box (as shown in figure 5.17). As soon as you do,
you will see the ALUr value updated, and the PSR will be updated. The
ALUr will be set (if you used the correct values) to $00E3 and all the flags
will have been set to 0;

� Finally, click the ‘OK’ button on the ALU dialog box to make it disappear.

Figure 5.17 The JASPer ALU dialog box
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CHAPTER SUMMARY

The role of the ALU and PSR

� The ALU is the calculator of the processor - it can perform both logical
operations, such as AND, as well as arithmetic operations like ADD;

� The V, N, C and Z flags of the PSR are updated after every ALU operation;

� The V flag indicates 2’s complement overflow;

� The N flag indicates that the ALUr contains a 2’s complement negative
number;

� The C flag indicates that a carry was generated by the previous ALU
operation;

� The Z flag indicates that the contents of the ALUr are zero.

Controlling the ALU

� The ALU registers are connected to the data bus by connection circuitry,
as the ALU registers need to be disconnected from the data bus at certain
times;

� A 4-bit code controls the operation of the ALU circuitry;

� A decoder decodes the control signal, in order to perform the given ALU
operation.

Adder circuits

� The half adder has two inputs, X and Y and two outputs, the sum and carry;

� The full adder has three inputs, X, Y and the carry in. It has two outputs,
the sum and carry out;

� A full adder can be built from two half adders and an OR gate.

ALU circuitry

� Individual ALU operations can be constructed from gate logic. The individ-
ual circuits can have the ALUx and ALUy as inputs, and output the ALUr
and the PSR flags;

� Full adders are used to perform addition.
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Using the ALU in JASPer

� The ALU in JASPer can perform operations on the contents of the
ALUx and ALUy, displaying the ALUr output and setting the PSR flags
accordingly.

SELF TEST QUESTIONS

1 Using JASPer, compute $0034 + $4500.

2 Using JASPer, compute $0034 - $4500. Why is the N flag of the PSR set
to 1?

3 Using JASPer, compute $0005 + $FFFB. What flags are set to 1, and
why?

4 Using JASPer, compute $0004<< 2, where ‘<<’ means perform a shift
left operation. What has this operation effectively done?

5 Using JASPer, compute $0004 AND $0014.

6 Using JASPer, compute $001D OR $0023.

7 Using Digital Works, build a full adder from half adders, as shown in figure
5.10. Prove that your circuit matches the truth table for a full adder.

EXERCISES

1 Using JASPer, compute $0016 + $0034.

2 Using JASPer, compute $0008>>1, where ‘>>’ means perform a shift
right operation. What has this operation effectively done?

3 Add the values $D000 and $0123 using the JASPer ALU. What is the
result and what are the flags set to? Explain why the N flag has been set
to 1.

4 Write down the largest positive number in a 16-bit 2’s complement rep-
resentation. Write down the largest negative number in a 16-bit 2’s
complement representation. Add these together in JASPer, what is the
result, and why?

5 Using JASPer, compute $FFFF + $0001. What flags are set to 1, and
why? How could the C flag be used to perform multi-word arithmetic?
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Buses

CHAPTER OVERVIEW

This chapter examines how processor components can be linked
with the use of buses.

This chapter includes:

� Processor buses - the data bus, the address bus and the control
bus;

� Building a bus with gate logic;

� Timing diagrams;

� Buses in JASPer.

6.1 What is a Bus?

A bus is a collection of conductive wires that connect a number of logical ele-
ments together, to allow values to be moved from one element to another (on
a silicon chip the bus is actually etched conductive material - but the concept
is the same).

Although we don’t actually need a bus, as we could create our processor with
individual wire connections from each logical element to each other, the wiring
requirement would end up being very convoluted. Therefore it is better to have
a bus that all elements can share.

Typically, processors actually have more than one bus - JASPer for example
has three, these being the data bus, the address bus, and the control bus
(we’ll talk about each in turn in a moment) - but still don’t lose the fact that they
are each effectively just the equivalent of a ‘data highway’.
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Back in chapter 4 we saw how to connect registers to a bus as in figure 6.1.

D0

D3

COE OE C

Register 1 Register 2

4-bit Register4-bit Register

Reset Reset

Figure 6.1 Connecting registers with a bus

As you remember, we have to be very careful how we transfer bit patterns - we
have to ensure that we only put the contents of one register on to the bus at
any one time. If we attempt to put more than one register bit pattern onto the
bus at the same time we end up with a situation called bus contention. This
would mean that our processor wouldn’t work as we expected.

To connect logical units, such as registers, to the bus we use tri-state logic. In
this way we can effectively disconnect the outputs from all other logical units,
such that bus contention can never occur.

6.1.1 The Data Bus

The data bus is used to connect all the internal components of the processor.
As its name suggests, it is used to transfer data from one logical component
(a register, or perhaps the ALU) to another. The data bus is bi-directional, in
that if we connected two registers to our bus, as in figure 6.1, it would be
possible to transfer the Register 1 bit pattern to Register 2 as well as transfer
the Register 2 bit pattern to Register 1.

DEFINITION
Bi-directional : A bus is
bi-directional if signals can
pass either way along the
wires.

6.1.2 The Address BusDEFINITION
Uni-directional : A bus is
uni-directional if signals
can only pass one way
along the wires.

The address bus is different to the data bus in a number of ways. Firstly, it
only connects the processor (or more precisely one particular register - the
Memory Address Register, or MAR) to the external memory. We’ll cover this
in more detail in chapter 7. Secondly, the address bus is uni-directional - as
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we only ever need to transfer bit patterns from the MAR to memory, and never
the other way around.

Figure 6.2 The buses in JASPer

6.1.3 The Control Bus

The control bus is quite different from the data and address buses. Whereas
the data and address buses are generally the same width as the register size
(and we tend to draw them as thick lines in a diagram rather than showing the
individual wires, otherwise circuit diagrams become hugely complicated), the
control bus is a conglomeration of wires for control signals connected to all
parts of the processor. All the control wires of the control bus originate in the
processor at a particular component known as the Control Unit, or CU. We’ll
describe the use of this particular component, and how it sends its control
signals on the control bus, in chapter 8. Each line of the control bus is also
uni-directional - as signals are sent from the control unit to each particular
logic unit and never the other way around.

6.2 Building A Bus

Each bus itself is essentially a group of wires (or conductive etchings), and so
doesn’t require much design. However, the important aspect is ensuring that
each logic unit (such as the registers or the ALU) is connected to the bus in
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such a way that it can be effectively connected or disconnected from the bus
as required. This is done, as we’ve seen, by the use of tri-state logic gates.

Only one component should be transferring its value onto the bus at any one
time.

To transfer a value from one register to another we:

� Enable the output of the source register, setting the value onto the bus;

� Clock the destination register, such that the register takes the bit pattern
from the bus and stores it internally;

� Disable the output of the source register, ready to perform another
operation on the bus.

We must always join the outputs from a logical element (like a register) to the
bus using tri-state logic. We can tie all the enable pins from all the tri-state
gates for a particular logic element together, so that we can have just one
enable input to the logic element.

Sometimes, the use of a bus has to happen at very precise times. For example,
we tend to show memory access in a timing diagram, like that shown in figure
6.3.

CS
1

0

R/W
1

0

1

0

Data Valid

Address Valid
1

0

Clock

A0 - A15

D0 - D15

Figure 6.3 A timing diagram

Timing diagrams are very important to hardware engineers, they show at what
point particular lines can be read from, or written to. For example, this partic-
ular timing diagram shows a memory read. We can see that the address bus
initially is expected to be floating, or undefined (indicated by the address bus
is initially shown as being between 0 and 1). At a certain point the address is
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valid on the address lines (shown as a valid block), after which it returns to a
floating state. At the point when the data lines have valid content, we need to
ensure that we clock the MDR to perform the data read.

6.3 Buses In JASPer

The buses in JASPer can be seen in the main ‘black box’ view - they are
displayed as grey lines connecting the registers and the ALU. Most of the grey
lines that you can see are the data bus, which is 16 bits wide, so that we
can transfer bit patterns from one register to another in one operation. The
address bus, which is also 16 bits wide, can be seen in the top right of the
display connecting the MAR with memory while the control bus is shown in a
symbolic form only - as the control lines leaving the right of the CU. When we
run JASPer we can see the control lines from the CU flash briefly, signifying
the control unit outputting the control line signals.

The buses in JASPer can be seen in figure 6.2.

6.3.1 Introducing Data Movement Operations

We have already seen (in chapter 4) how to to make use of the data bus to
transfer a value from one register to another.

We use the bus every time we transfer a bit pattern from one register to
another - this, as we saw before, is known as a data movement operation,
although strictly speaking we are not moving a bit pattern but copying it from
one register to another.

In JASPer we can either:

� Click on ‘processor/data movement’, and then click on our destination
register followed by our source register;

� Use the ‘processor/microcode list/data movement’ menu option to select
the particular data movement operation (shown in figure 6.4). Note that
we select the destination first, followed by the source register.
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Figure 6.4 Performing a data movement in JASPer

Each data movement can be described using RTL, we briefly saw RTL in chap-
ter 4. So, for example, the data movement from the MDR register to the A
register can be described as:

A←[MDR]

Where the brackets mean contents of. So read this RTL instruction as ‘move
the contents of the MDR register to the A register’.

Sometimes, it doesn’t make sense to move from particular registers to another,
for example it doesn’t make sense to have a data movement like:

MAR←[INC]

as this is something we would never practically need to do, as the INC register
is only ever used to update the PC register, as we will find out in chapter 8.
In JASPer only a required subset of data movements is allowed, reflecting the
abilities of real processors.
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CHAPTER SUMMARY

Processor buses

� Buses are required to join processor components;

� Our simple processor has three buses - the data bus, the address bus and
the control bus;

� The data and address buses are used to transfer data and addresses
between registers and memory;

� The control bus emanates from the CU - individual lines are used to control
individual components.

Building a bus

� A bus can effectively be thought of as a set of wires;

� In integrated circuits the buses consist of etched conductive material;

� Components are joined to buses by tri-state logic;

� The synchronization required to make use of a bus is often shown in a
timing diagram.

Buses in JASPer

� JASPer has three buses - the data, address and control buses. It is used
to transfer values between components.

SELF TEST QUESTIONS

1 Describe the use of the data bus.

2 Describe in RTL the data movement operation where a value from the
ALUr is transferred to the B register.

3 Describe in RTL the data movement operation where a value from the A
register is transferred to the MDR.

4 Describe the two key differences between the control bus and the data
bus.
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EXERCISES

1 Using \examples\chapter04\bitregister2.dwm, cause bus con-
tention to occur.

2 Using \examples\chapter04\bitregister2.dwm as a starting point,
build a bus with three connected registers.

3 Using your circuit from exercise two, examine how you can copy the con-
tents of register one to both register two and register three. Can you
perform these data movements in parallel?
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CHAPTER OVERVIEW

In this chapter we cover the key aspects of memory, how to build it
and how to make use of it.

This chapter includes:

� The concepts of memory;

� How to build memory from gate logic;

� Types of memory;

� Address decoding strategies;

� Memory maps;

� Using memory in JASPer;

7.1 Introducing Memory

So far, we have discussed every important element of our processor; we have
described the registers, the ALU, and how they all interconnect using a bus
- we will look inside the control unit in chapter 17. However, even though we
have almost everything we need to build our simple computer system, there
is still one important element we need in order for our computer to be useful -
a memory. Without a memory the processor in our computer system is effec-
tively useless. Without a memory we don’t have a von Neumann architecture
(we discussed this briefly in chapter 1) - the memory is required to store our
data, and (importantly for our von Neumann architecture) our program.

The first thing we need to understand is the structure of our memory. There are
two attributes that we need to be aware of, these are memory width (some-
times referred to as the word size - remember that JASPer has a word size
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of 16 bits) and storage size. The first describes the width of values we wish
to store in our memory (whether it is 4, 8 or 16 bits, or some totally different
value), while the second describes how many values our memory can store at
any one time.

If we were to examine a memory such as that in figure 7.1, we would say that
it is 4 bits wide (or has a word size of 4 bits) and can store four distinct values,
addressed as 002,012,102 and 112. Conceptually, we can think of memory
as a one dimensional array of memory locations, all locations with a unique
address, and each being able to store a finite bit pattern.

0 1 1 0

0 1

0 1 0

0011

10

01

00

Address
0 0

11

1

Memory Width

Storage
Size

Figure 7.1 Our initial memory

The addresses are shown to the left of the memory store - we can see
for example that memory location 012 contains the value 01012 (5). This
memory consists of only four locations - hence the 2-bit address required to
successfully address the entire contents of the memory.

Our memory needs the following functionality:

� We must be able to select a particular memory location;

� We need to be able to read the memory value from that location;

� If required we need to write a new value to that location;

� We need to be able to connect our memory to the data and address buses
of our processor.

7.2 Building A Small Memory

Let’s start off by building memory devices and connecting them to our
processor, and then later we can concentrate on how to use them.
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We can construct memory using similar methods to building registers, using
D flip-flops. Also, we need to come up with a method by which we can read or
write to particular locations.

To recap what we learnt in chapter 4, we can use a D flip-flop (as shown in
figure 7.2) to store one bit of information.

Q

Q

N1 A1 NOR1

NOR2
A2

C

D

A3N2

Figure 7.2 The D flip-flop revisited

From there we can jump to the circuit for a very small memory as shown in
figure 7.3. This particular memory is very small indeed - it only contains two
words, each with a word size of 4 bits; each 4-bit word is constructed using
D flip-flops. Once we understand this very small memory, we understand the
fundamental design aspects of all memories.

Let us examine this circuit:

� It connects to the data bus, an address bus (one bit only for simplicity -
with one bit we can select one of two memory locations), and two control
lines - CS (the chip select - used to activate a particular memory chip)
and R/W̄ . The R/W̄ label tells us that when this value is set to 1, we are
performing a read operation, and when it is set to 0 we are performing a
write operation;

� It has tri-state gates to separate the output of the memory from the data
bus. The output of both memory words is fed to the tri-state gates through
OR gates - as only one memory word at a time is selected this arrange-
ment means that an individual word bit pattern can be placed on the data
bus;

� The gates beneath the memory words in the diagram are used to select
individual words for either read or write operations.
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Figure 7.3 The circuit for our small memory

We can see that each word in memory is effectively built in the same way that
the registers in chapter 4 were, but we need to examine both how to read from,
and how to write to, our small memory.

7.2.1 Reading From Our Small Memory

Let’s work through the steps we need to take to read from a particular memory
location, and place the value stored there on the data bus. For this example
we’ll assume that we want to use the bit pattern stored at memory location 0,
and that the pattern stored there is 10112.

� We place the address onto the address bus, setting A0 to 0 in this
example;

� We set the R/W̄ line to 1 to indicate that we wish this operation to be a
memory read;
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� We set the chip select line to 1, at which point data from word 0 is placed
onto the data bus;

� At this point we would clock the destination register;

� Finally, we set the CS line to 0.

You can test this circuit using the Digital Works file smallmem.dwm. Follow
this process through the logic gates to check that you understand what is
happening.

7.2.2 Writing To Our Small Memory

Writing to our memory is as simple as reading.

Let us see how we would perform a memory write to this memory, to memory
word 1 for example:

� We place the data to be transferred onto the data bus (from a register for
example);

� We place the address onto the address bus, setting A0 to 1 in this
example;

� We set the R/W̄ line to 0 to indicate that we wish this operation to be a
memory write;

� We set the chip select line to 1, at which point the clock lines of the D
flip-flops making up memory word 1 will take the data from the data bus.

� Finally, we set the CS line to 0.

You can also test the memory write operation using smallmem.dwm. Follow
this process through the logic gates to check that you understand what is
happening.

7.3 Types of Memory

Once we have built our small memory, we can start to think of it as a functional
unit in its own right. In fact, we often show memory chips in circuit diagrams
using the sort of symbol shown in figure 7.4. This particular chip is known as
a 4x4 (pronounced 4 by 4) RAM memory. A RAM chip is one that we can both
read from and write to. RAM stands for Random Access Memory.
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R/W
4x4 RAM

CS

A1 A0

D0D3

Figure 7.4 A 4x4 RAM chip

So how much data can we store in a 4x4 RAM chip? The first four indicates
that this chip has four distinct memory locations (and hence will use a two
bit address bus), and the second four indicates that each value stored in the
memory chip is four bits wide (we could also say that this chip has a word
length of four bits) - which means that we would have to attach it to a 4-bit
data bus. You can see these data and address bus connections in figure 7.4,
together with the CS line and the R/W̄ line.

Memory chips can come in all sorts of word length and location sizes. Figure
7.5 shows a 4x16 RAM chip , which has four distinct memory locations each
with a 16 bit word length, while figure 7.6 shows a 256x16 RAM chip which
has 256 different memory locations to be used.

R/W
CS

A1 A0

D0

4x16 RAM

D15

Figure 7.5 A 4x16 RAM chip

R/W
CS

A0

D0D15

A7

256x16 RAM

Figure 7.6 A 256x16 RAM chip

Incidentally, we have only looked at the sort of memory that we can either
read from or write to. Not all memory has to be like this - there is also a form
of memory that we can only read from. This is called ROM, or Read Only
Memory.
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A typical ROM chip is shown in figure 7.7. As you can see, it does not need a
R/W̄ line, as we can only read from it. Why would we need a memory that we
can’t write to? First of all, it’s worth saying that we would store bit patterns in
the ROM when we built it - and it could be very useful in being able to ensure
that no computer program could ever overwrite these values. For example,
most computer systems have a very small program called a boot loader in
ROM, and it is this program that helps to start up the computer so that it can
be used - being able to write over the boot loader program could mean that we
could never start the computer again! So ROM can prove very useful.

A1 A0

D0

4x16 ROM

D15

CS

Figure 7.7 A 4x16 ROM chip

7.4 Building Larger Memories

Memory chips used to be very small, holding something like 1024 values.
These days it is possible to purchase much larger memory chips - 256Mx32
(256 × 1024 × 1024) 32-bit RAM chips are not uncommon. No doubt chips
with greater and greater capacity will be developed over time.

However, no matter how large chips become, the chances are that we never
want to construct our computer memory from just one chip, as this is very
inflexible and difficult to update later. When we use multiple chips for our com-
plete memory we need to ensure that we end up being able to make use of
our memory as if it were a single entity. To make this clearer we’ll introduce
the concept of a memory map - no prizes for guessing that this is a map of all
memory locations available to our processor. Programmers can use memory
maps to understand which memory location is stored on which chip.

The memory map for our small memory (four unique locations) is shown in
figure 7.8. The start of memory is generally shown at the bottom - so this par-
ticular memory has locations from 002 to 112 (our four locations). Normally, we
would show the memory addresses in hexadecimal, but the memories we are
going to use are very small and a binary representation is more appropriate
for what we need to understand.
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11

00

RAM

Address

Figure 7.8 A memory map for our small memory

If we wanted to build a memory using two chips, then it makes sense to in-
crease our memory map to that shown in figure 7.9. We can see that the
first memory chip is accessed by the lower addresses and the second mem-
ory chip is accessed by the higher addresses. We’ll now look at how we can
implement such an arrangement.

111

RAM
011

100

000

Chip 1

Chip 0

Address

Figure 7.9 A memory map for a larger memory

First of all, I’ll show you how to connect up two memory chips to create a larger
memory, and then we’ll go on to create a memory that consists of four memory
chips.

The key issue is that we need to ensure that when we select a particular
memory location we need to ensure that we are selecting a location on one
chip only.

So, our memory consisting of two chips has addresses beginning at 0002 and
ending at 1112. If we look carefully however, we can see that the MSB is set
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to 0 for all locations on chip 0 and is set to 1 for all locations on chip 1 - this
is our clue to a simple access strategy. It means that we can use the MSB of
the address to select which chip we wish to make use of, and the two lower
bits of the address bus can be wired to the two address pins of each memory
chip - see figure 7.10 to see what I mean. Also, it’s worth noticing that in figure
7.10, the chip select pin (CS) is active low in this diagram (shown by the C̄S
symbol) - which is pretty common for memory chips, so we’ll start to see this
convention in future figures. Active low means that the chip is made use of
when the CS line is set to 0. Also, the connections to the data bus are not
shown as this would have unnecessarily cluttered the diagram, but remember
that D0 to D15 of both chips are wired to the data bus.

R/WR/W CS

D15

D0
A1
A0

RAM
4x16

Chip 0

A0

A2

CS

D15

D0
A1
A0

RAM
4x16

Chip 1

Address Bus

Figure 7.10 Building a larger memory with multiple memory chips

To use this memory, if we want to select chip 1 for example, we need an
address in the format 1xx2 (xx indicates the address location within the chip
itself). This means that address line A2 = 1 in order to select chip 1. A2 is fed
through a NOT gate, so producing an output of zero - this is what we need on
the CS pin of the memory chip to select it.

How can we advance on this principle to create even larger memories? Let’s
imagine that we want to build a memory that’s twice as big again, making use
of four of our memory chips. The memory map for such a memory is shown
in figure 7.11. Effectively, to build our larger memory we can use the same
principle as before, but instead of using the highest bit of the address to select
which chip is used, we can use the top two bits of the address. Look at the
memory map values to see how the top two bits of each address indicate
which chip we want to use.
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1111

1011

1100

1000

0111

0100

0011

0000

RAM

Chip 3

Chip 2

Chip 0

Chip 1

Address

Figure 7.11 A memory map for an even larger memory

So, it’s just a matter of using NAND gates to connect the address lines to the
CS pin on each chip, as shown in figure 7.12.

For example, if we want to select chip two, we need an address in the format
10xx2. To get this, the address lines have to have A2 = 0 and A3 = 1, in order
to select chip two. A2 is fed through a NOT gate, so that the NAND gate has
inputs of one and one, so producing an output of zero - this is what we need
on the CS pin of the memory chip to select it.

7.5 Building Wider Memories

We’ve solved the problem of building larger memories with small chips, but
what if we need to use memory chips that are not wide enough? For example,
can we build a memory that is eight bits wide from chips that are only four bits
wide? Yes, we can.
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R/W R/W CS

D15

D0
A1
A0

RAM
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Chip 0

R/W R/W

A0

CS

D15

D0
A1
A0

RAM
4x16

Chip 3

Address Bus

A3

CS

D15

D0
A1
A0

RAM
4x16

Chip 2

CS

D15

D0
A1
A0

RAM
4x16

Chip 1

Figure 7.12 Building an even larger memory with multiple memory chips

We can connect up two memory chips to different lines of the data bus, and
identically wire them to the address bus - see figure 7.13 to see what I mean.

Let’s imagine that we want to store the value 111100002 at location 0112 in our
8-bit memory (that is really built from two 4-bit chips). Here’s how we can do
it:

� Place the address on the address bus (0112). Please note that the MSB
of the address is a zero, so activating the chip selects of both chips.

� Place the value we want to store on the data bus (111100002).

� Set the R/W̄ line (connected to the R/W̄ pins of both chips) to 0,
indicating that we want to write to our memory.

� Chip 0 will now store the value from the lower four data lines (the value
00002), while chip 1 will store the value from the upper 4 data lines (11112).
Incidentally, four bits is known as a nybble, being half a byte (this is not
a joke! Two bits in some circles used to be called a crumb, but this isn’t
really used any more).

7.6 Address Decoding Strategies

The process of figuring out how a particular chip is used within a memory
map is called address decoding, and there are two main ways in which we
can address individual memory chips. These methods are known as partial
address decoding and full address decoding. We’ll briefly look at each in turn.

The method we saw above in figure 7.12 was full address decoding, where we
used particular address line combinations to select a particular memory chip
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- this is because each address line is used to calculate the unique location on
one unique memory chip.

R/W

R/W

R/W

A0

A2

Address Bus

CS

D0
A1
A0

RAM
4x4

D0

D7

Data Bus

CS

D0
A1
A0

RAM
4x4

Chip 1 Chip 0

D3 D3

Figure 7.13 Building a wider memory

If the address space (the range of possible addresses) was larger than the
amount of memory available, we could have used partial address decoding
- in this form of decoding not all of the address lines are used, just enough
to select the required memory chips. Partial address decoding is simpler (and
therefore cheaper) to build. This form of addressing is used in small embedded
devices, where it’s very unlikely to ever want to expand the use of memory to
the full address space.

Let’s have a look at a particular partial address decoding example - as shown
in figure 7.14. At first glance you may think that you’ve seen this before, in
figure 7.10 - actually, it may be similar but it is different in one very important
aspect - can you spot where?

The difference is with how the two memory chips are wired to the address bus.
The address bus lines A0 and A1 are connected to the pins of the same name
on each chip - however, the chip select line is wired only to the A3 address
line. Such a layout would be fine if we were using a 4-bit bus and yet only
needed to connect 2 memory chips to it. As you can imagine, we don’t need
any complicated logic to work out the values for the chip select line - we can
just use the MSB of the address to select either chip.
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R/WR/W CS

D15

D0
A1
A0

RAM
4x16

Chip 0

A0

A3

CS

D15

D0
A1
A0

RAM
4x16

Chip 1

Address Bus

Figure 7.14 Partial address decoding

It does lead to a minor oddity in the memory map, as shown in figure 7.15. The
address space with four bit addresses is 16 separate addresses, but effectively
we are never using address line A2, so an address like 10112 or 11112 would
address the same location in memory - we sometimes refer to such an address
as 1x112, as the value of address line two is immaterial. In other words, we
have duplicate locations within our memory map.

7.7 Using Memory

The memory map is very important to the programmer of a microprocessor
system - It is the memory map that defines what memory locations can be
read to or written from (RAM), which areas are read-only (ROM), as well as
showing any memory-mapped devices (which we will cover in depth in chapter
12) and any gaps in the memory map that the programmer cannot use.

The memory map for JASPer is shown in figure 7.16. In this we can see that in-
dividual parts of the JASPer memory have particular uses - this is fairly typical
of small microcomputer devices.
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1111

1011

1100

1000

0111

0100

0011

0000

RAM

Chip 1

Chip 1

Chip 0

Chip 0

Address

Figure 7.15 A memory map of a system using partial address decoding

Within the map you can see:

� Areas where we can write our programs and data;

� Three memory-mapped devices (we’ll cover this in more depth in chapter
12) - one is for input/output, one is for a peripherals device and the other
is a system clock (we will make use of the clock in chapter 13);

� Reserved areas - locations that we could use for our programs and data,
but it would be unwise to use because the system designers have reserved
this memory location (in order to perhaps later introduce an extra feature).
If we were to use this location for our programs and data, they may not
work on later versions of our processor system;

� An interrupt vector table - we’ll describe this in chapter 13.

It’s worth noting that often the memory map is not drawn showing all memory
locations - the jagged lines at the side of individual memory areas indicate that
the particular section has been made smaller so that the memory map can fit
on a single page.
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00FF
0100

0FFF
1000

FFFF

00F8
00F7

0000
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00E0
00E1
00E2
00E3
00E4

00E7
00E8
00E9
00EA
00EB
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00ED
00EE
00EF
00F0

Not installed in
default configuration

User programs and data

RAM

Year
Month
Day

Reserved
Timer
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Minute 
Second

System
Clock

Interrupt vector table

Reserved

Description

IDR
ISR
ODR
OSR Memory mapped

I/O Device

RAM

User programs and data

Address

Peripheral box communication

Figure 7.16 The JASPer memory map

Incidentally, we can ‘install’ extra memory in JASPer by modifying the value
for memory size within the ‘jumper settings’ dialog box - reached by the menu
option ‘file/jumper settings’, or by using the ‘jumper settings’ button on the
button bar. By default, JASPer starts with memory installed from $0000 to
$0FFF, which is 4Kb of 16-bit words.
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7.8 Connecting Memory To JASPer

Within JASPer we can transfer bit patterns between memory and registers as
simply as transferring bit patterns between registers. To do this we use two
particular RTL instructions, which we’ll get to in a moment, but firstly let us
look at the way in which our processor is connected to our memory. This is
shown in figure 7.17.

JASPer Memory

Bus
Data

Bus
Address

MDR

MAR

A0 ... A15

D0 ... D15

Control

Signals

Figure 7.17 Using memory in JASPer

As you can see, all three buses tie the processor to the memory. These are
the data bus, the address bus and the control bus.

� The data bus is 16 bits wide, and is bi-directional. we can use it to send
data to memory or read data from memory;

� The address bus is 16 bits wide, and is uni-directional. We use it to select
particular memory addresses;

� The control bus is uni-directional and sends the required signals to
memory.

We effectively use two JASPer registers to communicate with our memory,
these are the Memory Address Register, or MAR, and the Memory Data Reg-
ister, or MDR (connectivity to the rest of the chip isn’t shown in figure 7.17 -
we’ll look at the use of other registers in more detail in the next chapter).

We can define a memory read in RTL terms as:

MDR←[M [MAR]]
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This means transfer the contents from memory, at the location specified in
the MAR, into the MDR. [M [MAR]] means the contents of memory using the
contents of the MAR as an index.

A memory write is the reverse of this:

M [MAR]←[MDR]

This means transfer the contents of the MDR to memory at the location
specified by the address held in the MAR.

Figure 7.18 Performing a memory read in JASPer

7.8.1 Memory Transfers In JASPer

To perform memory transfers in JASPer we can:

125



www.manaraa.com

Fundamentals of Computer Architecture

� Use the ‘processor/microcode list/data movement’ menu option to select
the particular data movement operation (shown in figure 7.18). This can
be treated the same as any other data movement operation.

� Use the memory read or memory write buttons - these are shown in figure
7.19. There are five memory buttons on the JASPer button bar - we will
make most use of the first three which are, left to right, memory read
(which performs a memory read operation), memory write (which performs
a memory write operation) and view memory (which displays the complete
contents of the JASPer memory on screen).

Figure 7.19 JASPer memory buttons

Let’s perform an example. We’ll put the value $00FF into memory at address
$0001. How do we go about this?

� Place the value $00FF into the MDR;

� Place the address $0001 into the MAR;

� Perform the memory write. That’s it!

CHAPTER SUMMARY

The concepts of memory

� Memory is the information store for our processor;

� A memory has width and it has size;

� We need to be able to access individual memory locations to both write to
and read from.
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How to build memory from gate logic

� Individual memory locations can be built in a similar way to registers;

� Memory has the following inputs - the address bus, a chip select line and
a R/W̄ line. The data bus can be an input or an output, depending on
whether memory is being read or written to.

Types of memory

� Memory can be either ROM or RAM;

� If a chip is labelled as a ‘256x16 RAM’ this means that it has 256 distinct
memory locations and is 16 bits wide.

Address decoding strategies

� Larger memories can be built from small memory chips;

� Address decoding strategies can be either full, where all address lines are
used, or partial, where not all address lines are used;

� Wider memories can be built with small chips - individual memory chips
would be wired up to be activated at the same time, and each would hold
a subsection of the bit patterns required by the larger memory.

Memory maps

� A memory map is used to display which chip contains which memory ad-
dresses, and to display to the programmer the areas of memory that are
used for particular tasks.

Using memory in JASPer

� The memory display in JASPer indicates memory contents;

� A memory update consists of placing the address in the MAR, the data in
the MDR, and then performing a memory write;

� A memory read consists of placing the address in the MAR and then
performing a memory read, the data can then be copied from the MDR.

SELF TEST QUESTIONS

1 Write down the RTL instructions required to move a value from the B
register to memory location 000116.
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2 Write down the RTL instructions required to read a value from memory
location 00E016 and place it in the A register.

3 Within JASPer, place the value 00FF16 into memory location 000316.

EXERCISES

1 Within JASPer, place the value 001F16 into memory location 000216.

2 Within JASPer, place the value 02CD16 into memory location 000116.

3 Within JASPer, read the value held at memory location 000216.

4 Write down the RTL instructions required to move a value from the A
register to memory location 000316

5 A 1024x16 memory is to be built using two 512x16 memory chips. Sketch
out the address decoding strategy to build this memory.
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Bringing It All
Together - The
Hardware Engineer’s
Perspective

CHAPTER OVERVIEW

In this chapter we show how a set of registers, a control unit, a
memory, buses and an ALU can be combined to form a rudimentary
computer system.

This chapter includes:

� Assigning tasks to individual processor components;

� Micro-instructions;

� Instruction sets;

� The format of a program;

� The fetch-execute cycle;

� Executing programs in JASPer.

8.1 Recap

Is it really this easy to build components to make up a processor? Well, actu-
ally, no it isn’t. We’ve really only skimmed the surface of hardware issues - but
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we now have an understanding of how the individual components within the
processor will work, at the hardware level at least.

However, we now have to join these components together to form a processor,
one that is typical of all processors that are von Neumann architectures.

8.2 Assigning Tasks To Registers

Our rudimentary processor can be seen in figure 8.1. We can see all the
elements that we have built connected together to form the processor.

ALU
Control
Unit

Processor

MAR

MDR

A

B

ALUx ALUy

ALUr

IR

SP

INC

PC

PSR

Figure 8.1 Our rudimentary processor

We can now assign tasks to each register to enable the device to run a
program. So what sort of tasks does the processor have to do?
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� It needs to be able to read bit patterns from, and write bit patterns to,
memory. We saw how it could do this in the previous chapter;

� It needs to keep track of where we are within a program, so it knows what
to do next. We will see why shortly;

� It needs to know what to do for a particular instruction;

� It needs to be able to perform arithmetic and logical operations;

� It needs some general purpose storage areas.

Let us now assign these tasks to individual registers:

� We can use the Memory Address Register (MAR) and the Memory Data
Register (MDR) to read from, and write bit patterns to, memory;

� To keep track of where we are within our program, we use the Program
Counter (PC) which can be thought of as a bookmark so that we know
which instruction from memory we are to execute next - and we can use
the Incrementer (INC) to update the PC to store the next sequential pro-
gram address. This is because the INC is specially wired to always have
1 added to its input, for example, moving $0001 into the INC will result in
it storing $0002. We will discuss the usefulness of this shortly;

� To know what to do for a particular instruction we can firstly store it in
the Instruction Register (IR), and the Control Unit (CU) can decode each
instruction in turn - we won’t look inside the CU until chapter 17;

� To perform arithmetic and logical operations we can use the ALU, as we
saw in chapter 5. It has three registers - the ALUx , ALUy and ALUr . The
PSR stores information about the processor, including status of the last
ALU operation;

� To store bit patterns locally for the program we need some general pur-
pose registers - our simple processor has two of these, the A register and
the B register;

� If you check figure 8.1 you will find that we’ve mentioned all the registers
with the exception of the Stack Pointer (SP). We don’t need to cover that
until chapter 10 when we discuss subroutines.

All of these components are wired to the data bus, and their control lines are
wired to the outputs of the control unit. Additionally, the MAR is wired to the
address bus, so that addresses can be passed to memory. The processor and
the memory together form our rudimentary computer system.

We will shortly run a program using this system - so we will see each of these
components in action.
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8.3 Introducing Micro-Instructions

We still have a number of concepts to examine before we can actually look at
our first program in any detail.

So far we have looked at operations defined in RTL as the way in which
we effect changes in our processor. These sort of operations can be termed
micro-instructions, or microcodes. The micro-instruction defined in RTL as

A←[MDR]

can be thought of as short hand for enabling the MDR and clocking the A
register, as we saw in chapter 4, to put its bit pattern into the A register - in
other words a data movement operation. In fact, there are four distinct types
of micro-instructions that can be used by our processor. These are:

� Data movement micro-instructions, for example MAR←[A];
� ALU micro-instructions, like ALUr = [ALUx]+[ALUy] which means add

the ALUx and ALUy values together, storing the result in the ALUr and set
the PSR on the result;

� Test micro-instructions, like if(PSR(z) == 1), which checks to see if the
Z flag of the PSR has been set to one;

� Processor control micro-instructions , like halt which stops the processor,
or nop (which is short for no operation - this means run a micro-instruction
but don’t actually change the contents of any register).

So, effectively, a micro-instruction is a way to directly control the hardware of
the processor. All of the micro-instructions used by our simple processor are
listed in appendix A.

8.4 Introducing The Instruction Set

If we think of some of the tasks that we want to do, like ANDing two bit pat-
terns (performing a logical AND operation), using micro-instructions can be a
lengthy process.

Let’s see what I mean by way of an example. We will assume that we have a
representation of a number in the A register, and another representation of a
number in the B register. How can we go about obtaining the logical AND of
these bit patterns?

Using the micro-instructions available to us we have:

� ALUx←[A], Transfer one of the number representations to the ALUx;

� ALUy←[B], Transfer the other number representation to the ALUy;

132



www.manaraa.com

The Hardware Engineer’s Perspective

� ALUr←[ALUx]&[ALUy], Perform a logical AND operation, storing the
result in the ALUr, and setting the PSR flags on the result;

� A←[ALUr], Store the result of the AND operation in the A register.

So, as we can see, it took four micro-instructions to AND the two bit patterns
and store the result (and this is by no means a difficult task). If we were to write
programs using micro-instructions, they would be extraordinarily long and very
difficult to check that we haven’t introduced any mistakes. Therefore, we don’t.

Instead, we group sets of micro-instructions together to form higher level in-
structions, known as assembly language instructions. For example, we can
describe our previous example as the assembly language instruction

AND B,A

We read this as ANDing the bit patterns contained in the A and B registers,
and placing the result in the A register (we can tell this because A is the last
location named). This instruction is then encoded for the processor as a code
value, or number, to represent this task.

The bit pattern used to code the assembly language instruction is called the
operation code or opcode. The more readable form of the instruction (AND) is
known as the mnemonic (pronounced ‘nem-onnic’) and is just purely for we
humans - our processor does not make use of mnemonics.

DEFINITION
Opcode : Sometimes
referred to as the operation
code, this is the code for
the operation to be
performed. The set of different assembly instructions understood by the processor is

known as the instruction set. There are a finite number of instructions that
any processor can have in an instruction set, and this is limited by the width of
the opcode. In our simple processor the width of an opcode is eight bits, which
means that we can define a maximum of 256 different instructions in the in-
struction set. In practice we don’t need an instruction set as large as this -
we can actually write quite complex programs with very few different assembly
language instructions. You can examine the instructions available to us within
the instruction set for our processor in appendix B. In appendix C you can
see the individual micro-instructions that make up each assembly language
instruction.

DEFINITION
Mnemonic : A more easily
remembered alphabetic
code for an opcode.

When used in a program, any instruction will be coded with the opcode to-
gether with any operands, or parameters to the instruction. For example, if we
wanted to write the value 5 into the A register we could use an instruction like

MOVE #$5,A

The operands to this instruction are #$5, which means the number 5, and A,
which refers to the A register. Our particular processor expects to be given
only one operand with any opcode and so some operands are implicit to the
opcode and some are explicit.

The A register is an implicit operand to this opcode, the opcode to write 5
to register B is actually a different instruction. The one explicit operand in

133



www.manaraa.com

Fundamentals of Computer Architecture

this example is the value #$5. We write the opcode and the explicit operand
together as a 16-bit machine code - it is these machine codes that our simple
processor decodes and executes.

We will discuss how to encode instructions in the next chapter, for now we will
concentrate on the structure of a program that we can later load into JASPer
to see if it works as expected.

*
* Our first sum program
*
org 0
9005        MOVE #$05,A     * Transfer the first data value
                            *   to the A register

Comments

0600        ADD  B,A        * Add them, storing the result in
                            *   the A register
F000        HALT            * Stop the program

Machine code Mnemonics and
operands

Comments

                            *   the B register

Directive

9103        MOVE #$03,B     * Transfer the second data value to

Figure 8.2 The sum program

Figure 8.2 displays a small program that will work on our simple processor,
and we need to understand what this program is telling us, so here are a few
points to make note of:

� Any text that begins with an asterisk is a comment, and the rest of the line
is not used by the processor;

� The instruction org 0 is a directive that tells the processor to store the pro-
gram in memory starting from location $0000. We will discuss directives in
the next chapter;

� Within the main body of the program each instruction is shown as machine
code, mnemonics and operands, and then finally comments. Note that the
mnemonics and operands are not used by the processor at all - they are
there to remind us what each machine code does. Each 16-bit machine
code encodes the instruction completely.

Strictly speaking, when writing a program we only need to write the machine
code - but it would make our programs very difficult to understand when we
came back to them after even a short break.

The set of machine codes that make up this program need to be stored in
memory in order for us to run it. When loaded into the memory of our system
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the first instruction, $9005, is stored at memory location $0000, the second
instruction $9103 at location $0001 and so on - this is shown in figure 8.3.

0 0 59

1 0 39

6 0 00

0 0 0F

0 0 00

locations
Higher memory

0007

0006

0005

0004

0003

0002

0001

0000

0008

The program
stored in memory

0 0 00

0 0 00

0 0 00

0 0 00

Figure 8.3 The sum program stored in memory

The task of the processor is to consecutively fetch each instruction and then
decode and execute it. To do this it uses a process known as the fetch-execute
cycle.

8.5 The Fetch-Execute Cycle

To understand how this processor system actually executes a program we
will run the sum program that we’ve just looked at. This program adds two
numbers together - effectively we will ask our processor to perform:

5 + 3

Hopefully, you will already have an idea of what the result will be! If you had
to use pen and paper, rather than working the answer out in your head, how
would you solve this problem? You would probably first write down both num-
bers on your paper, perform the addition in your head, and then write the result
on your paper too. The program in figure 8.2 does pretty much the same thing:

� It stores the value 5 in the A register;
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� It stores the value 3 in the B register;

� It adds the contents of A and B together (using the ALU), and stores the
result in the A register;

� Finally it halts the processor.

Now we will examine how the processor executes this program using the fetch-
execute cycle.

If we were to load this small program into JASPer, and execute it, let’s try to
figure out what we would expect to happen:

� The processor loads, or fetches, the first instruction from memory (stored
in memory at location $0000) into the IR;

� Next it runs, or executes, this first instruction - it is the CU that does this,
and as already seen, the A register takes the bit pattern $05;

� It then fetches the second instruction from memory and stores it in the IR;

� Next it executes this second instruction - the B register takes the bit pattern
$03;

� It then fetches the third instruction from memory and stores it in the IR;

� It executes this third instruction, which adds the contents of A to B, storing
the result in the A register;

� After that it fetches the final instruction and places it in the IR;

� It executes the final instruction which, as the mnemonic hints, stops the
processor.

This process shows that the processor has to repeatedly fetch an instruction
from memory, and execute it - hence this process is termed the fetch-execute
cycle.

Like any assembly language instruction, the fetch-execute too is defined in
terms of individual micro-instructions and we will look at the structure of the
fetch-execute cycle next.

8.6 Inside The Fetch-Execute Cycle

The function of the fetch-execute cycle is exactly as it sounds. In order for
a program to run, the processor must fetch each instruction in turn, and
then execute it by running each individual micro-instruction that the instruc-
tion consists of. The only ways that the processor would cease to fetch the
next instruction are:

� If the power to the processor is switched off;

� The halt microcode is executed;
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� The processor reset button is pressed.

The fetch cycle is the same for every single instruction - no matter what the
instruction is. This makes sense, because how otherwise could the processor
fetch an instruction in a ‘special’ way if, as the instruction has not yet been
fetched, it is impossible to tell what instruction it will be.

In our simple processor, the fetch cycle is defined as the following RTL
sequence:

1 MAR←[PC]
2 INC←[PC]
3 PC←[INC]
4 MDR←[M [MAR]]
5 IR←[MDR]
6 CU←[IR(opcode)]

Here is what these RTL statements mean:

1 When fetching an instruction, we always assume that the PC contains the
address of the next instruction to be fetched. For example, if a program is
loaded into memory beginning at location $0000, then the PC needs to con-
tain $0000 prior to running the program. Only then will the first instruction
of the program actually be the first instruction fetched;

2 We tend to group micro-instructions 2 and 3 together, because together
they perform the operation PC = PC + 1. As previously mentioned, moving
a value into the INC results in the value plus 1 being stored, so in just two
microcodes we are able to add 1 to the value of the PC. Why is this so
necessary? We need to perform this for every single fetch cycle (so we do
it a lot), so it is important that we can do it as quickly as possible. It means
that the address of the next instruction to be fetched is already loaded into
the PC, ready for the next fetch cycle. Also, using the INC to add 1 to the
PC doesn’t use the ALU, and therefore doesn’t affect any of the PSR flags;

3 See point 2;

NOTES
It is worth noting that some
micro-instructions can be
performed in parallel, i.e.
at the same time, for
example MAR←[PC]
and INC←[PC] in the
fetch cycle. We don’t need
to consider this to
understand our processor.

4 Next we access memory. We have seen this micro-instruction before, in
chapter 7. It means access memory at the location stored in the MAR, and
place the accessed bit pattern in the MDR. In other words, the MDR now
contains the instruction to be executed;

5 But we still haven’t finished there. Next we move the value from the MDR to
the IR. This again is a special register, because it allows us to access either
the opcode or the operand separately - we will see why this is useful next;

6 Finally, in the last part of the fetch cycle, we place the opcode of the in-
struction from the IR(opcode) - which is how we write ‘the opcode part of
the Instruction Register’ (shown in figure 8.4) - and place it in the CU. It is
the CU that is the heart of the processor, because it decodes this instruction
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and sends the control signals to the rest of the processor in order to execute
the instruction that has been fetched. Don’t worry about how it does this -
we will cover this in detail in chapter 17.

Contents of IR

accessed as [IR]

9 0 0 5

IR

Contents of operandContents of opcode
accessed as [IR(opcode)] accessed as [IR(operand)]Opcode Operand

Figure 8.4 Inside the IR

Once the fetch cycle has completed, the CU will perform the execute cycle for
the given opcode. For example, if we went back to the ADD B,A instruction the
following micro-instructions would be executed for the execute cycle:

1 ALUx←[A]
2 ALUy←[B]
3 ALUr = [ALUx] + [ALUy]
4 A←[ALUr]

Again, here is the explanation for this particular execution cycle:

1 We intend to add the contents of the A register to the contents of the B
register, so the first micro-instruction copies the current bit pattern of the A
register into the ALUx;

2 The second micro-instruction copies the contents of B into the ALUy;

3 We then add the two representations together. Incidentally it is worth noting
that on the addition, the PSR will also be updated - as we saw when we
described a simple addition circuit back in chapter 5;

4 Finally the result is stored in the A register.
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Register Size (bits) Description
PC 16 Program counter - is used to keep track of the memory address

storing the next instruction to be executed
INC 16 Incrementer - is used to add one to the value held in the PC,

something that needs to occur very often in most programs. Using
the incrementer (effectively as a specialist register) is faster than
using the ALU for this particular task, and importantly does not
affect the PSR flags

A 16 General Register A - is the first of two general purpose regis-
ters, programmers can use the general purpose registers to store
program bit patterns

B 16 General Register B - is the second of the two general purpose
registers

MAR 16 Memory Address Register - is used as a specialist register to store
the address of the memory location that we need to read from or
write to

MDR 16 Memory Data Register - is used as a specialist register to store
the data that we have just read from memory or need to write to
memory

IR 16 Instruction Register - is the specialist register where we store the
instruction once it has been fetched from memory

ALUx 16 Arithmetic Logic Unit X Register is the first of two specialist
registers where we store bit patterns to be used in ALU operations

ALUy 16 Arithmetic Logic Unit Y Register is the second of two specialist
registers where we store bit patterns to be used in ALU operations

ALUr 16 Arithmetic Logic Unit Result Register is the specialist register
where the result from an ALU operation is stored

SP 16 Stack Pointer - is the specialist register used to store the address
of the top of the stack held in memory - we will use the SP in
chapter 10

PSR 16 Processor Status Register - is where we store information about
the state of the processor, including the state of the last ALU
operation

Table 8.1 Processor registers

Once this execute cycle is completed, the CU would perform the next fetch
cycle, and so on. It is worth noting that the execute cycle for any given opcode
can consist of zero, one or many micro-instructions - and this can be different
for any given opcode.

One further issue worth mentioning is the use of the IR(operand) field. This
field, as we saw in figure 8.4 is eight bits wide, and therefore we need to un-
derstand the issue of performing data movements from the IR(operand) to a
16-bit wide register, as used in many instructions found in the instruction set
used by our simple processor. When we perform a data movement from the
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IR(operand) the data value is sign extended to 16 bits. This means that of the
8-bit IR(operand) value, the MSB is used to ‘fill’ eight left-most bits to produce
a 16-bit value. This is demonstrated in figure 8.5. It is important to remem-
ber that, even though we have increased the number of bits representing the
value, we are representing the same value - it has not changed. In figure 8.5
the 8-bit and the 16-bit values both represent the decimal number 43. The
figure also shows the 8-bit and 16-bit values that both represent the decimal
number −85.

0 0 1 0 1 0 1 1

0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1

8-bit Value

16-bit Value

Copies of the MSB

0 1 0 1 0 1 1

0 1 0 1 0 1 1

8-bit Value

16-bit Value

Copies of the MSB

1

111111111

Figure 8.5 Sign extension

To recap the use of each of the registers, table 8.1 describes each of the
registers in turn.

8.7 Running The Program In JASPer

Let’s get back to running our example program from figure 8.2. We are going
to load it into our processor system, and see what happens when we run it.

The file we want to run is stored on the CD that accompanies this book. On
the CD, the sum program is stored in the location

\examples\chapter08\sum.jas
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To load the program into JASPer use the ‘file/open’ menu option, or use the
‘file open’ button. Once you’ve done that, let’s check the contents of memory
using the ‘view memory’ button (or the ‘memory/view’ menu option) to ensure
that the program has loaded successfully - if it has we can see the four lines
of the program loaded in memory from address $0000.

The memory display is also useful because alongside the memory contents it
also shows the instruction loaded in that location - it does this by looking at
the most significant byte of each 16-bit machine code and checks what opcode
this would represent (leaving a blank if the opcode is not a valid instruction in
the instruction set). Notice that where we haven’t loaded any program, like
at address $0004, the mnemonic ADD #data,A is still listed - this is because
the most significant byte, $00 indicates this instruction - the memory display
cannot tell which 16-bit machine codes to treat as a program, so it blindly lists
the instruction for all memory locations.

You can see how your memory view should look with the program loaded in
figure 8.6. Note that unlike figure 8.3, JASPer lists memory addresses from
top to bottom.

We are nearly ready to run our program, but let’s have a brief think about what
we are expecting to see.

� Firstly, we expect to have to run four instructions, so this means that we
are going to see a fetch cycle followed by an execute cycle, four times;

� The first instruction, MOVE #$05,A (machine code $9005) will be fetched
first from memory because when we start the program the value of the PC
will be $0000 indicating the address of the first instruction of our program;

� For the execute phase, if we look up opcode $90 in appendix C we will find
that the pattern moved into the IR(operand) during the fetch cycle (which
will be $05) will be moved into the A register;

� Next we see another fetch cycle, identical to the first except that it is the
second instruction of the program, from address $0001 that will be fetched;

� The execute phase for this instruction will store 3 into the B register;

� Next we see another fetch cycle fetching the instruction from address
$0002;

� This third instruction will use the ALU to add the contents of A and B;

� Next we run the fourth and final fetch cycle - we should be getting used to
seeing the fetch cycle now;

� The final execute cycle (for the HALT instruction) will unsurprisingly cause
the processor to halt.

So let’s run the program now.
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1 The first time we run the program, we are going to trace through our pro-
gram. This means that we are going to run each instruction separately -
so that we can look at the values in the registers and make sure that we
understand what is happening;

2 Use the ‘trace’ button, or the ‘processor/trace’ menu option to run the first
instruction. You will see each micro-instruction being run in turn for firstly
the fetch cycle and then the execute cycle. The fetch cycle matches exactly
what we described before, while the execute cycle copies the number $05
to the A register as expected. By the way, if you’ve accidentally hit ‘go’
instead of ‘trace’ and you want to stop the processor, click on any part of
the main processor display and the program will halt after the current cycle
is completed;

3 Next, use the ‘trace’ button again to run the second instruction in the
program (see how the PC is already pointing to the address of the next
instruction?);

4 Next, use the ‘trace’ button again to run the third instruction in the program.
Note that the ALU is used and that the PSR flags are set on the result;

5 Finally, run the last instruction in the same way. Once you’ve completed all
of this your processor should look to be in the same state (the registers
contain the same values) as shown in figure 8.7.

Figure 8.6 Our program in memory

After all of that what have we done? We successfully ran a program to add
together 5 + 3, and the result can be seen where we left it in the A register.
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Even though this is a very small program it still demonstrates pretty much how
any program on any von Neumann processor runs.

Before we finish this chapter we will briefly run our program one more time,
not to see if the answer is any different (it won’t be!), but to see how we can
run a program without having to run each instruction individually.

Figure 8.7 The state of JASPer after running the program in trace mode

1 Firstly, hit the processor reset button or use the menu option ‘proces-
sor/reset’. This resets all the registers back to $0000, but leaves the
contents of memory intact;

2 Instead of tracing through the program again, use the ‘go’ button or select
‘processor/go’ from the menu. This runs the whole program again and stops
when the HALT instruction is encountered. If you’ve done this successfully,
your processor will look like that in figure 8.8;
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3 If you want to slow down the animation in JASPer, use the ‘file/jumper set-
tings’ option and set a slower animation speed. Reset the processor and
execute the program again.

Figure 8.8 The state of JASPer after running the program

Now that we have a working processor system we will close this section on
hardware issues. In the next section we will examine this system from the
viewpoint of the programmer.
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CHAPTER SUMMARY

Tasks for individual registers

� The PC is used to bookmark which instruction the processor is to execute
next;

� The INC is used to add 1 to the PC;

� The MAR and MDR are used to access memory;

� A and B are general purpose registers;

� The IR is used to store the instruction;

� The ALUx and ALUy are the ALU inputs;

� The ALUr is the ALU output, and the PSR contains flags that are updated
by the ALU.

Micro-instructions

� The four sets of micro-instructions understood by our simple processor are
the data movement micro-instructions, the ALU micro-instructions, the test
micro-instructions and the control micro-instructions;

� All micro-instructions can be represented by an RTL description;

� Assembly language instructions can be defined using micro-instructions.

Instruction sets

� The number of instructions within an instruction set is limited by the width
of the opcode;

� Our simple processor has an opcode width of eight bits and therefore we
can have a maximum of 256 instructions in an instruction set. In reality we
do not need this many to write useful programs.

The format of a program

� The processor executes the machine codes of a program;

� Additionally we add mnemonics, operands and comments so that we can
understand what the individual machine codes are to do.
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The fetch-execute cycle

� The processor runs programs by using the fetch-execute cycle;

� Each instruction in memory is in turn, fetched, placed in the IR, and then
executed by the CU.

Executing programs in JASPer

� JASPer can ‘trace’ a program, whereby each instruction is run individually;

� JASPer can execute a program whereby the program runs until either it
completes, or the processor is reset.

SELF TEST QUESTIONS

1 Which instruction has the opcode $90? What micro-instructions make up
the execute cycle for this opcode?

2 Which instruction has the opcode $C3? What micro-instructions make up
the execute cycle for this opcode?

3 What function does the INC register have? Could we replace its use with
the ALU? How would the fetch cycle have to be changed?

4 Which register decodes both the fetch and execute cycles?

EXERCISES

1 Which instruction has the opcode $06? What micro-instructions make up
the execute cycle for this opcode?

2 Which instruction has the opcode $02? What micro-instructions make up
the execute cycle for this opcode?

3 On the CD find \examples\chapter08\sum2.jas and load it into
JASPer. Using the appendices, figure out what each line does - and then
run the program a line at a time using the ‘trace’ button. If the program
does something unexpected, reset the processor and run the program
again.
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Using the Processor

We look at the processor from the point of view of the
programmer.
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Writing Structured
Programs

CHAPTER OVERVIEW

In this chapter we begin the task of focusing on the programmer’s
perspective of our processor system.

This chapter includes:

� The programming hierarchy;

� Structured programming concepts - sequences, selections and
iterations;

� Writing assembly language programs;

� The assembly process;

� The debugging process;

� A comparison with using high-level languages;

� Tips on structured programming.

9.1 Introducing Programming

We’ve seen in part 1 that it is the program that actually makes the computer
do something, whether that something is working out your bank balance, play-
ing a ring-tone on your mobile phone, keeping your car engine efficient, or
stopping a Boeing 737 from flying into a mountain.

Programs are written by human beings (to be pedantic it is also possible to
have a program that writes programs - but someone had to write the program
that writes the programs).
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It is possible to write a program for a computer at one of a number of levels,
known as a programming hierarchy. A simplified hierarchy is shown in figure
9.1. Different programming languages are written for each particular level, and
each level has its own set of good and bad points. Also, each level sits on the
level below it.

Instruction Set Architecture (ISA)

Micro-instruction Level

High-Level Language

Hardware (Logic Gates)

Level

Abstraction

Of

C, C++, Java, Pascal, etc.

Assembly language

AND, OR, NOT, etc.

Register Transfer Language

Figure 9.1 A programming hierarchy

Generally, the higher you are in the hierarchy, the more abstract a program
can be. For example, high-level languages, such as C or Java include notions
of variables (used as a named place where we can store a piece of data) and
data structures (a way of storing related data items). At the second lowest level
we have the micro-instruction level, which is totally aimed at effecting control
of the lowest level, the hardware of the computer.

In this chapter we will concentrate on the Instruction Set Architecture (ISA)
level, occasionally explaining concepts in a higher level language to show how
the levels map onto each other.

9.2 Introducing Assembly Programming

At the instruction set architecture level we program our processor in assem-
bly language instructions - we saw a brief glimpse of these in the previous
chapter. Normally, we would apply the process as shown in figure 9.2, writ-
ing a program using assembly language mnemonics and running a program
called an assembler to assemble our program into machine code. However,
until chapter 14 we will act as our own assembler program.
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Assembly language instructions correspond one to one (mostly) with the ma-
chine code instructions that we have seen so far, but are written in mnemonics
to help we humans understand the machine code.

Assembly Program

Machine Code

Assembler

0003
9700
61F0
F000

ADD  #$03,A
MOVE A,B
OR   #$F0,B
HALT

Figure 9.2 The assembly process

9.3 Programming Concepts
NOTES

For further information on
programming constructs,
and indeed many other
computing issues, refer to
[com02].

To understand how to program our processor we are going to look at some-
thing known as procedural programming. This is a form of programming that
has been with us since the early days of computing. Lately, the trend has
been to move to object oriented programming. Many modern languages, like
Java for example, are object oriented languages. Object orientation is an
abstraction used by programmers to more easily create programs.

Any procedural program is based on three fundamental constructs. These are:

� Sequences - executing one instruction sequentially after another;

� Selections - making a decision to do one thing or another;

� Iterations - doing something multiple times.

Let’s look at each construct in turn, firstly using a high-level language, then
moving to assembly language.
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9.3.1 Sequences

A sequence is simply one instruction followed by another. For example, in
a high-level language (this happens to be a pseudo-language (a made-up
language) which is a cross between Java and C - designed to highlight
the programming constructs rather than the idiosyncracies of any given real
language) we could say something like:

number1 = 34;
number2 = 12;
number1 = number1 + number2;

In this sequence of three instructions (each instruction is terminated by a semi-
colon) we have two variables (called number1 and number2) having values
assigned to them, and then the last instruction setting the first variable to be
the sum of both variables.

In assembly code we could write something like

MOVE #^34,A * store the decimal value 34 in A
MOVE #^12,B * store the decimal value 12 in B
ADD B,A * add A and B, storing the result in A

The first thing to notice about the assembly language program is that we can
store variables on our processor in the A and B registers. We can also store
variables in memory locations, but we will look at that later. Also, it is worth
remembering that a ^ character indicates that the following number is decimal.

NOTES
What base is it? : A $

indicates hexadecimal, a ^

indicates decimal, a @

indicates octal, and a %

indicates binary. An assembly instruction does not end with a semi-colon, and indeed the com-
ment at the end of the line is not necessary - however, I recommend that you
always write at least one comment for every line of assembly code you write.
Your comments should describe, in as high a level as possible, what the as-
sembly code actually does. All comments in an assembly language program
written for our processor begin with an asterisk and run to the end of the line.

9.3.2 Selections

Selections are more complicated than sequences, in fact there are a few ways
to write a selection construct. The first of these is called an if construct, and
we follow that with an if-then-else construct, which is just an embellishment
of an if construct.
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The If Construct

Here is the format for an if construct:

if (condition) {
// payload to run if condition is true
T_PAYLOAD

} // end if

We need to note the following points:

� ‘//’ precedes any comment in our high-level language, the comment runs
to the end of the line;

� The condition is used to decide whether to run our selection or not. More
on this in a moment;

� If the condition is true, then the instructions between the curly braces
(containing T PAYLOAD, which means the condition true payload) are the
instructions that are run;

� The payload of the selection can consist of other sequences, selections or
iterations of program instructions.

Here is an example of an if construct in a high-level language.

A = 2;
B = 2;
if (A==B) {

// payload to run if condition is true
A = 0;

} // end if

In this example, we first assign the value of two variables, then we meet the
if construct. In this construct A==B is known as the condition, which means
if the two variables are equal, then the condition is true, else the condition is
false. If the condition is true (it is), then the payload of the construct (setting A
to be 0) is executed. If we were to change this example such that the first line
reads

A = 1;

then the payload would not be executed as the condition of the if construct
would be false. In assembly language we could write the example as follows:
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MOVE #^02,A * initialize A
MOVE #^02,B * initialize B
CMP A,B * check the condition
BEQ true * if the condition is true, branch to

* the payload
JMP end_if * if it isn’t, go to the end of the ’if’

true MOVE #^00,A * this line is the T_PAYLOAD
end_if HALT

Here are the points to look out for in the assembly program example:

� true and end if are both examples of labels. A label is used to refer to
a memory address where a variable or an instruction can be stored. For
example, the HALT instruction will be stored at a memory address that has
been labelled as end if - the instruction JMP end if means jump to the
address that contains the HALT instruction. It is important to note that in
assembly language programs for JASPer, labels must always begin in the
first column of the file, with no spaces before it on the line;

� Checking the condition takes multiple assembly language instructions -
we’ll cover these next.

To check the condition to see if both A and B registers contain the same value
takes two assembly instructions. These are:

CMP A,B
BEQ true

The first of these, the CMP instruction, actually performs a subtract operation,
setting the PSR flags, but does not store the result from the ALUr. We can see
this by looking in appendix C to find that the execution cycle for this instruction
is:

� ALUx←[B]
� ALUy←[A]
� ALUr = [ALUx]− [ALUy]

So, the act of executing the CMP instruction will set the PSR Z flag to one if the
values were the same, or set it to zero if they weren’t.

The next instruction (BEQ) checks to see if the Z flag is set to one, and if it is,
the program flow of control (which instruction in the program should be run
next) is moved to the line on which the label true can be found (the label is
treated as an address). If the Z flag is not set to 1 then the next line of the
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program is executed. This occurs because the instruction uses a test micro-
instruction as the first micro-instruction of the BEQ execute cycle. The complete
execute cycle for the BEQ instruction is:

� if(PSR(z) == 1)
� PC←[IR(operand)]

Essentially, if the test micro-instruction evaluates to be true, then any
other micro-instructions following it in the execute cycle are executed (the
one data movement micro-instruction in this example), otherwise all other
micro-instructions for the execute cycle are ignored.

All conditions used to perform selections (and indeed, iterations) are controlled
by the setting, and the checking, of the PSR flags, Z, N, V and C.

Lastly, it is worth noting that the JMP instruction near the end of the program is
known as an unconditional jump as it immediately moves the flow of control to
the line on which the end if label can be found - ensuring that the condition
payload (the final MOVE instruction) is only executed when the condition is true.

The If-Then-Else Construct

This is an extended form of the if construct. If a condition is true, some true
payload will be executed, otherwise some false payload will be executed. This
can be formatted as follows:

if (condition) {
// payload to run if condition is true
T_PAYLOAD

}
else {

// payload to run if condition is false
F_PAYLOAD

} // end if

As you can see, the condition controls which payload will be executed. This
can be shown in an example as follows:

A = 2;
B = 2;
if (A==B) {

// payload to run if condition is true
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A = 0;
}
else {

// payload to run if condition is false
A = 1;

} // end if

In this example, if the condition is true the true payload will be executed (setting
A to 0), otherwise the false payload will be executed (setting A to 1). If we were
to code this example into assembly language, we would have the following:

MOVE #^02,A * initialize A
MOVE #^02,B * initialize B
CMP A,B * check the condition
BEQ true * if the condition is true, branch to

* the T_PAYLOAD
* else execute the F_PAYLOAD

false MOVE #^01,A * this line is the F_PAYLOAD
JMP end_if * go to the end of the if-else

true MOVE #^00,A * this line is the T_PAYLOAD
end_if HALT * halt the program

Again, in this example we see the condition being checked by use of first a
CMP instruction followed by a BEQ instruction. Run through each line to ensure
you understand what is happening.

9.3.3 Iterations

Iterations are a way of running particular instructions multiple times, for exam-
ple if you wanted to count up to ten by adding one each time. In assembly
language, iterations are relatively similar to sequence constructs.

I’ll show you two forms of iteration constructs, known as the while construct
and the for construct.

The While Construct

The format of the while construct is shown here.
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while (condition) {
// payload to run while condition is true
PAYLOAD

} // end while

It is similar to what we have seen before except that, while the condition is
true, the payload will keep executing (the flow of control will loop at the end
of the while construct, back to check the condition again) - with the condition
being checked prior to every payload execution. At the point that the condition
becomes false, the flow of control leaves the while construct. It is worth noting
that this form of construct is known as a zero-based iteration, in other words
the payload can be executed zero, one or more times.

Another construct known as a repeat-until construct is similar to the while
construct except that the payload always executes at least once, as the condi-
tion is checked after the payload has executed. It is a non-zero based iteration.

Both while constructs and repeat-until constructs are also sometimes
referred to as a condition-controlled loop.

Let us have a look at a while construct example:

A = 10;
B = 0;
while (A > B) {

// payload to run if condition is true
B = B + 1;

} // end while

In this example, the payload executes while the condition A > B is true, which
is until the value of B also reaches 10. This is converted to assembly code as
follows:

MOVE #^10,A * initialize A
MOVE #^00,B * initialize B

while CMP A,B * check the condition
BMI true * if the condition is true, branch to

* the payload
JMP end_while * if it isn’t, go to the end of the ’while’

true ADD #^01,B * this line is the PAYLOAD
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JMP while * run the loop again
end_while HALT * halt program

You can see that this time the condition is checked with a BMI instruction,
which uses the N flag to see if the value in the A register is greater than that
in the B register (the CMP A,B instruction actually subtracts A from B, sets the
PSR flags on the result, but does not store the result - it is used purely to
ensure that the PSR flags are updated).

Generally, we tend to use a while construct when we don’t know how many
times we want to execute a particular instruction payload.

The For Construct

The for construct is similar again to the while construct, but it is used in a
slightly different way in that we tend to use it whenever we know exactly how
many times we wish the payload to be executed. The for construct is also
sometimes referred to as a count-controlled loop.

The format of a for construct is as follows:

for (initialization; condition; increment) {
// payload to run while the condition is true
PAYLOAD

} // end for

As you can see the condition looks different to before, in that in this case it is
built from three separate statements. The first statement deals with any vari-
able initialization, the second is the condition itself, and the third is a statement
to be executed after every payload execution. This can be demonstrated in an
example.

B = 0;
for (A=0; A < 5; A++) {

// payload to run while the condition is true
B = B + 1;

} // end for
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In this example, the condition is true for precisely five iterations, while A is set
to 0, through to while A is set to 4. As soon as A is set to 5 the condition
becomes false and the payload is no longer executed. This example can be
converted to assembly instructions as follows:

MOVE #^00,B * initialize B
for MOVE #^00,A * initialize A
loop CMP #^05,A * check the condition

BEQ end_for * if the condition is false, branch to
* the end of the for construct
* otherwise run the PAYLOAD

ADD #^01,B * this line is the PAYLOAD
ADD #^01,A * increment A once the payload has executed
JMP loop * run the loop again

end_for HALT * halt the program

This is very similar to the examples we have seen before.

It is worth mentioning that any for construct can just as easily be written as a
while construct, as a while construct can also be used to execute a payload
a given number of times. Here is the structure of a for construct expressed
as a while construct:

initialization;
while (condition) {

// payload to run while the condition is true
PAYLOAD
increment;

} // end while

9.4 Writing Our First Assembly Program

For our first program we will write a program to perform division. Let us first
attempt to write our program in our higher level language, and then over a
number of steps we will produce the machine code to run on the processor -
this process is known as stepwise refinement.

count = 0; // to store the quotient

dividend = 100; // the number to be divided
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divisor = 9; // the number to divide by

while (dividend >= divisor) {
count = count + 1;
dividend = dividend - divisor;

}

This program will iteratively count how many times the divisor can be sub-
tracted from the dividend, until the dividend value is less than the divisor
value. Then the count variable will tell us the quotient and the final value will
be the remainder.

9.4.1 Writing The Assembly Instructions

Writing the equivalent assembly instruction program is relatively simple once
we make some decisions regarding where we are going to store the variables.

The problem is that our processor only has two registers to store variables in
(register A and register B) and yet our program makes use of three variables
(divisor, dividend and count). So where can we store the third variable?
We will have to store it in a memory location (again, due to the von Neumann
architecture, both program and data are stored in the same memory).

We will make the decision to store the divisor in the A register and the
dividend in the B register. We could have done this the other way around,
or indeed placed the count value in either register, but the point is that we
have decided on our storage and we can now write our assembly program.
The third variable, count, can go in a memory location.

So, using the previous while construct example as a template, let us have a
first attempt at our assembly program. We will produce our solution in stages,
so the first stage consists of coding the initializations and the while construct.

MOVE #^0,count * initialize the count variable
MOVE #^100,A * initialize A with the dividend value
MOVE #^9,B * initialize B with the divisor value

while CMP A,B * check the condition
BMI true * if the condition is true, branch to

* the payload
JMP end_while * if it isn’t, go to the end of the ’while’

true PAYLOAD goes here
JMP while

end_while HALT
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So far we haven’t added the payload to the while construct, but we can do
that next.

MOVE #^0,count * initialize the count variable
MOVE #^100,A * initialize A with the dividend value
MOVE #^9,B * initialize B with the divisor value

while CMP A,B * check the condition
BMI true * if the condition is true, branch to

* the payload
JMP end_while * if it isn’t, go to the end of the ’while’

true SUB B,A * } dividend = dividend - divisor
ADD #^01,count * } count = count + 1
JMP while

end_while HALT

Our second attempt is actually pretty close to our needs, and follows the struc-
ture of the high-level program in a format applied from the previous while
example. However, it currently has one small flaw. It won’t work.

The flaw is that we have treated count as if it were a register, and unfortunately
we can’t treat it like this, because when we look at the set of instructions
available to us (listed in appendix B), there are no instructions that can add
1 directly to a memory location - instead we need to use registers A or B to
add 1 to our count variable. Maybe you’ve spotted the problem by now - we
are already storing variables in both of those registers. So what can we do?
Simple, we transfer the current value from, say, the A register into a temporary
storage area in a memory location, use A to add one to count, and then move
the value from the temporary storage back into the A register.

Here is our finished assembly program:

ORG 0 * load program in memory at location 0
MOVE #^0,A * } initialize the count variable
MOVE A,count * }
MOVE #^100,A * initialize A with the dividend value
MOVE #^9,B * initialize B with the divisor value

while CMP A,B * check the condition
BMI true * if the condition is true, branch to

* the payload
JMP end_while * if it isn’t, go to the end of the ’while’

true MOVE A,temp * }
MOVE count,A * }
ADD #^01,A * } count = count + 1
MOVE A,count * }
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MOVE temp,A * }
SUB B,A * dividend = dividend - divisor
JMP while * check the condition again

end_while HALT * stop the program on completion
count DS.W 1 * store count variable here
temp DS.W 1 * store temp variable here

Note the following in the finished program:

� Initializing count now takes two instructions, as we have to use the A
register to pass the initial value to our memory location for count;

� In assembly code count = count + 1 has taken us five instructions,
because we had to store count in memory;

� I have added an ORG 0 directive at the start of the program. Directives are
normally instructions for the assembler program, but for the moment they
are messages to ourselves as we will be the assembler program. ORG 0
means begin storing this program in memory starting at memory location
0;

� I have also added two DS.W directives at the end of the program. DS.W
stands for Define Storage - Word, in other words, it tells the assembler to
store our variables count and temp in memory. Each has one word put
aside for it.

Now we have finished our assembly program, we need to convert it to machine
code in order to execute it, so that we can see if it works.

9.4.2 The Assembly Process - Converting To
Machine Code

As I’ve said before, once we have a complete assembly program it is normal
to run a program called an assembler to create the machine code that we
can execute. However, until chapter 14 we will act as our own assembler pro-
gram, so we can see how the assembly program is methodically converted
into machine code.

NOTES
Assemblers that run on
one instruction set
architecture, and yet
produce programs to run
on a second architecture
are known as
cross-assemblers.

We will use the following steps in order to produce our required machine code
program:

� Convert any directives into the required machine code (discussed later);

� For each instruction, check the instruction set and find the opcode that
represents the instruction;

� Figure out where each instruction will be stored in memory;
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� Assign values to each instruction operand.

The first line of our program is an ORG directive, this is actually the only di-
rective that JASPer can understand, and so we can include it directly in our
machine code program to tell JASPer to load our program into memory start-
ing at location 0. If we were to leave this directive out JASPer would load the
program by default into memory starting at address 0 anyway, but the ORG di-
rective is useful if we want to load a program into any other location in memory.
It is also a reminder to us of where the program will load in memory.

The second line is our first instruction to convert into machine code. To do this
we need to first think about the instruction MOVE #^0,A to ensure we under-
stand what it is meant to do. It moves a number (which happens to be 0) into
the A register. If we were to look for all the different MOVE instructions in the
instruction set (as listed in appendix B) we would find many, but if we limited
ourselves to moves where the result is transferred to the A register then we
have the following MOVE instructions to choose from. These instructions use
different addressing modes - we will discuss addressing modes in chapter 11.

We need to decide which of these is the correct match to our instruction:

90 MOVE #data,A Move an immediate oper. into A
92 MOVE addr,A Load reg. A from a direct addr.
94 MOVE (addr),A Load reg. A from an indirect addr.
96 MOVE B,A Move B reg. to A reg.
98 MOVE (B),A Load A reg. with a reg. indirect oper.
9a MOVE B+addr,A Load A reg from an indexed addr. (index in B)

Now, only the first of these transfers an immediate operand into the A register,
so our opcode for this first instruction is $90.

The next instruction MOVE A,count is a little different, as we are treating count
as the address of the memory location where this variable is stored, so the
correct instruction is:

A2 MOVE A,addr Store the A reg. in memory at a direct addr.

Therefore the correct opcode is $A2.

If we follow this process for all the instructions we end up with the following.
I’ve numbered each line of the program to indicate where it will be stored in
memory, the first instruction is stored in memory location $0000, while the
temp variable is stored in memory location $0010.
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Essentially, at this stage we attempt to match the pattern of the instruction
to ensure we choose the correct opcode. In reality we are choosing between
different addressing modes.

Address Instruction Comment

ORG 0 0000 ORG 0 * load program in memory at location 0
90?? 0000 MOVE #^0,A * } initialize the count variable
A2?? 0001 MOVE A,count * }
90?? 0002 MOVE #^100,A * initialize A with the dividend value
91?? 0003 MOVE #^9,B * initialize B with the divisor value
87?? 0004 while CMP A,B * check the condition
BB?? 0005 BMI true * if the condition is true, branch to

0006 * the payload
E0?? 0006 JMP end_while * if it isn’t, go to end of the ’while’
A2?? 0007 true MOVE A,temp * }
92?? 0008 MOVE count,A * }
00?? 0009 ADD #^01,A * } count = count + 1
A2?? 000A MOVE A,count * }
92?? 000B MOVE temp,A * }
26?? 000C SUB B,A * dividend = dividend - divisor
E0?? 000D JMP while * check the condition again
F0?? 000E end_while HALT * stop the program on completion
0000 000F count DS.W 1 * store count variable here
0000 0010 temp DS.W 1 * store temp variable here

Note that the DS.W directives simply convert into $0000 values stored in mem-
ory - to be used as the storage locations for the variables count and temp.
Remember, these last two entries stored in memory are data locations, and
not part of the machine code program.

Next, for each instruction we need to work out the missing operand for each
instruction. Our first instruction, MOVE #^0,A is easy enough, because the
immediate operand is 0, therefore as an 8-bit value (remember, all operands
are 8 bits) we write down $00.

The second instruction count, as we said, is being used as an address where
our variable is being stored. So, if we look towards the bottom of the program
we can see that count is listed as being at address $000F, which in 8 bits (the
lower 8 bits) becomes the operand value $0F.

There are also a number of other interesting operations. It is worth considering
the operand for the instruction CMP A,B. This instruction requires no explicit
operand when converted to machine code, and so we pad the operand field
with $00 to form the complete 16-bit machine code. In theory, we could use
any value - because the processor will never make use of the operand part of
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the machine code for this instruction, but it is convention that makes us pad
out the unneeded operand with zeroes rather than use any other value.

Lastly, let us consider the instruction BMI true. Again, true is considered to
be an address, and we use the address where the label true is shown at the
start of the line, which is $0007 (shortened to $07 for our 8-bit operand).

If we continue this process we finally end up with the program as follows:

ORG 0 0000 ORG 0 * load program in memory at location 0
9000 0000 MOVE #^0,A * } initialize the count variable
A20F 0001 MOVE A,count * }
9064 0002 MOVE #^100,A * initialize A with the dividend value
9109 0003 MOVE #^9,B * initialize B with the divisor value
8700 0004 while CMP A,B * check the condition
BB07 0005 BMI true * if the condition is true, branch to

0006 * the payload
E00E 0006 JMP end_while * if it isn’t, go to end of the ’while’
A210 0007 true MOVE A,temp * }
920F 0008 MOVE count,A * }
0001 0009 ADD #^01,A * } count = count + 1
A20F 000A MOVE A,count * }
9210 000B MOVE temp,A * }
2600 000C SUB B,A * dividend = dividend - divisor
E004 000D JMP while * check the condition again
F000 000E end_while HALT * stop the program on completion
0000 000F count DS.W 1 * store count variable here
0000 0010 temp DS.W 1 * store temp variable here

After all that we have now completed the assembly process. Now to execute
it, and see if it does what we expect!

9.4.3 Running The Program

Finally, we have reached the point where we can run our program. To do this
we need to do the following in JASPer:

� Load the program (found in the file \examples\chapter09\divide.jas
on the CD);

� Disable animation in the ‘jumper settings’ dialog box (otherwise the pro-
gram will take a long time to complete, as we will see all the individual
data movement animations);

� Run the program.
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Once the program has completed, JASPer will look like figure 9.3.

Now, did our program work correctly? The result of the divide operation will
be in memory location $000F (the storage for count). If we have a look at the
memory contents, as shown in figure 9.4, we can see that the result is $000B,
or converted to decimal, 11. So, we have proved that

100÷ 9 = 11

which is correct once we understand that we have performed an integer divide.
In fact the remainder is left in the A register - it is set to $0001, so it’s probably
more correct to say that we have proved

100÷ 9 = 11, remainder 1

Figure 9.3 JASPer after running divide.jas
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9.4.4 The Debugging Process

Is it this easy to write machine code programs? No, I’m afraid it isn’t because
even the slightest error (like using the wrong opcode, or the wrong address for
an operand) can cause the program to malfunction - sometimes spectacularly.
For example, it is possible to enter an infinite loop, which means that the
program will never complete. When this happens the only solution is to click
the mouse on the JASPer window to simulate the hitting of the processor reset
button.

So how do we ensure our program does work correctly? We follow a process
known as debugging.

Debugging allows us to remove syntax errors and semantic errors in our pro-
gram. Syntax errors are those that cause the program to fail when entering
them into memory (or more accurately fail during the assembly process), such
as if we attempted to include a machine code value like $F00G, which is plainly
incorrect hexadecimal. Semantic errors occur in programs that load correctly,
but the program fails to do what we expect it to do, such as a condition that
fails to ever set to true (possibly because we are checking the incorrect PSR
flag).

NOTES
Debugging is so named
because the first computer
bug was a real live (well,
dead actually) bug, that
stuck between a relay in a
very early computer - and
so caused the program
that was running to fail.
The bug (a moth) was
saved for posterity in the
computer log book - a
photo of the bug can be
found in [Kur92]. Taking
the bugs out of programs,
or debugging, started as a
slang term for fixing errors
in programs, and is now
used throughout the
computing industry.

Figure 9.4 Contents of memory after running divide.jas
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The aim of debugging is to remove all syntactic and semantic errors.

Syntactical errors, commonly known as syntax errors, are removed first (if your
program won’t load into JASPer then you have a syntax error), after which se-
mantic errors are removed which is a much longer and more arduous process!
Essentially, if your program doesn’t work correctly, you need to logically and
methodically work through your program a line at a time (known as stepping
through your program), working from the first line until you reach the end of
the program. It takes practice to become a good debugger!

9.5 Using High-Level Languages

Writing programs in high-level languages, like C, C++, Java or Pascal, is
essentially a similar procedure to writing assembly programs.

If we were to write a high-level program for JASPer, we would use a com-
piler program to compile the program into machine code. A compiler is similar
(but more complicated) to an assembler program and we’ll talk more about
compilers in chapter 14.

The machine code that the compiler produces would work in exactly the same
way as that produced by the assembler program (or us mimicking an assem-
bler). Just because one program can be written in a high-level language and
another in assembly language, it doesn’t mean that the resulting machine
code acts differently on the underlying processor. The resulting machine code
programs would work in the same way.

9.6 Tips On Structured Programming

When writing structured programs, try to remember the following:

� In all of the assembly instruction constructs displayed above, each has
exactly one entrance (the first line of the construct), and exactly one exit
(the last line of the construct). Any piece of code that contains constructs
with either more than one entrance or more than one exit is known as
spaghetti code, because of the convoluted route that the flow of control
takes through such a program. Writing spaghetti code is to be avoided at
all costs!

� Always use stepwise refinement for writing procedural programs. This
method is also known as the top down approach, or top down design;

� It is worth emphasizing that, although all the above examples only show
payloads consisting of short instruction sequences, a payload can itself
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consist of other sequences, selections or iterations of instructions. We will
see this in future examples;

� Comment every line of assembly code! Otherwise, a few days later your
own programs will be incomprehensible to you.

CHAPTER SUMMARY

Structured programming concepts

� The instruction set architecture level sits on top of the micro-instruction
level, which in turn sits on the hardware level;

� The structured programming constructs are sequences, selections and
iterations;

� if and if-then-else constructs are both examples of selections;

� while and for constructs are both examples of iterations;

� When writing any assembly language program, first write the program in
a higher level language prior to your first attempt at writing it in assembly
language.

The assembly and debugging processes

� To assemble a program, first code the opcodes, and then the operands to
produce the 16-bit machine codes that constitute the program;

� Once the program has been successfully assembled, syntax errors have
been removed. The task of the debugging process is to remove semantic
errors;

� Once syntax and semantic errors have been removed from a program it
will work correctly;

� High-level programs that are compiled execute on the processor in exactly
the same way as assembled programs.

Tips on structured programming

� All structured programming constructs have one entrance and one exit;

� Use stepwise refinement to write and test program constructs iteratively;

� Comment all assembly language statements as fully as possible and as
abstractly as possible.
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SELF TEST QUESTIONS

1 Write a program to find the answer to the sum 6 + 5. Hint, you can store
the values in A and B.

2 Modify your program to store the values to be added in memory. Hint,
store 6 in location 0010 and 5 in location 0011.

3 Using the assembly language equivalent of a for construct, write a
program to compute the sum of the first ten integers. Hint, use a CMP
#data,A instruction to see if your program should halt.

4 Write a program to sort two values held at the addresses 0020 and 0021,
such that the larger value is at the higher address. Describe your program
in a high-level language first.

EXERCISES

1 Describe why a compiler can find syntax errors but not semantic errors.

2 Write a program to find the answer to the sum 23 + 56.

3 Write a program to find the answer to the sum 23 - 56.

4 Write a program to sort two values held at the addresses 0040 and 0041,
such that the higher value is at the lower address. Describe your program
in a high-level language first.
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Stacks and
Subroutines

CHAPTER OVERVIEW

In this chapter we introduce the concept of a stack, and describe
how we can make use of stacks, most notably for implementing
subroutines.

This chapter includes:

� The concept of the stack;

� Hardware support for the stack - the stack pointer;

� Using the stack;

� The concept of the subroutine, and how they can be implemented
using the stack;

� Using subroutines in assembly language programs.

10.1 Introducing The Stack

Now we have begun writing simple assembly programs it is time to start intro-
ducing a very useful construct known as a stack. A stack is an example of an
abstract data type (ADT ), which is effectively a way to encapsulate data and
operations on that data. The use of abstract data types in high-level languages
is very common, and much less so at assembly level - the stack is the only
ADT we will encounter in this text. A stack is a very common abstract data
type, and we will see later how useful it can be to us in our role of assembly
language programmer.
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The most common analogy for a stack is a stack of plates. We can place
another plate on top of the stack of plates, or we can take off a plate from
the stack of plates. At all times we have a finite number of plates in the stack
(either zero, one or more) and at any time we can only ever make use of the
top plate on the stack.

The operation of placing an object on a stack is called a push, while removing
an object from a stack is called a pop. This arrangement is shown in figure
10.1.

We can POP a
plate off the stack

We can PUSH a
plate on to the stack

At any one time we can
only ‘use’ the top plate

The stack
of plates

Figure 10.1 A stack of plates

So, now you can picture a stack of plates it is only a small jump to imagining
a stack of anything - and for writing our programs we can imagine that instead
of plates we want to stack numbers.

How can stacking numbers be useful? Well, we can go back to our divide
example in chapter 9. Remember that we had to store a temporary value in a
location we called temp? Even though we had to place this value in a particular
memory location, in reality we didn’t care where it was stored in memory - we
just wanted a location that we could make use of briefly. You can imagine that,
if we had a large number of temporary values used in different parts of the
program, that life could get quite complicated keeping track of all the individual
memory locations used for each temporary value. By using a stack instead,
we actually make our life a little easier.

Here is the section of the divide program that made use of the temp variable.

MOVE A,temp * }
MOVE count,A * }
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ADD #^01,A * } count = count + 1
MOVE A,count * }
MOVE temp,A * }

To use the temp variable we had to define exactly where it was in memory as
shown here.

temp DS.W 1 * store temp variable here

If we needed to have more temporary variables we would have to have multiple
definitions like this in our program.

Using a stack we simply have to push the number we want to temporarily store
onto the stack. Later on, when we can pop the value back from the stack.

PUSH A * save A on the stack
MOVE count,A * }
ADD #^01,A * } count = count + 1
MOVE A,count * }
POP A * restore A from the stack

When we push or pop values to or from a stack we don’t care where individual
values are stored - just that they are stored.

However, if we were to push multiple values on to the stack that we later
wished to retrieve we need to remove them from the stack in reverse order.

10.2 Hardware Support For The Stack

Our stack is stored in memory, along with our program and any data, but so far
we haven’t considered how our processor knows where the stack is in memory,
and how it knows where the top element is in memory. All we know is that our
stack uses a number of contiguous (next to each other) memory locations to
store values.

With the stack of plates analogy, we always know which plate is the top plate
(no prizes for guessing it’s the one on the top of the stack), but when our stack
is just another part of memory with no clear ‘top’ or ‘bottom’ we need to keep
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track of what is happening with our stack in memory. Let us take a first look at
our stack in memory in figure 10.2.

Lower memory
locations

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

Limits of
the stack

locations
Stack initial stateHigher memory

00DE

00DF

00DD

00DC

00DB

00DA

00D9

00D8

00D7

Bottom of stack

Figure 10.2 Our stack in memory

Points worth noting include:

� We have placed the stack inclusively between memory locations $00D7
and $00DF in contiguous locations;

� Stacks are placed in memory upside down, so memory location $00DF will
be the first location used for the stack, then $00DE, etc;

� The bottom of the stack does not change, the stack grows downwards in
memory as we push values on to the stack.

This can be quite confusing at first, but hopefully things become a little clearer
if we push some numbers onto our stack. Firstly, we will push the value $FFFF
onto our stack, and then have a look at the stack now in figure 10.3.

The operation push does 2 things:

� It places the value in memory at the location indicated by the top of the
stack;

� It then moves the top of the stack to the next stack location (which is the
address obtained by taking 1 from the current top of stack address).
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Lower memory
locations

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

F

Limits of
the stack

F F F

Top of stack

Bottom of stack

locations
Higher memory

00DE

00DF

00DD

00DC

00DB

00DA

00D9

00D8

00D7

Figure 10.3 Our stack in memory after a PUSH operation

We can see the value we’ve pushed onto the stack at location $00DF. Also,
we can see that the top of the stack has moved by one memory location. The
bottom of the stack has remained in the same location (and will always do so
- the bottom of the stack is fixed).

Lower memory
locations

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

2 3 41

B C DA

F

Limits of
the stack

F F F Bottom of stack

Top of stack

locations
Higher memory

00DE

00DF

00DD

00DC

00DB

00DA

00D9

00D8

00D7

Figure 10.4 Our stack in memory after two more PUSH operations
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To ensure we understand what is happening let us now push two more values
onto the stack, these values are $ABCD and $1234. The stack after these push
operations is shown in figure 10.4.

Now we have three values on our stack and the top of the stack has moved to
location $00DC. The other operation we can perform on our stack is called pop
- it is the act of taking a value from the stack.

The operation pop does 2 things:

� It moves the top of the stack to the previous stack location (which is ef-
fectively the address obtained by adding 1 to the current top of stack
address);

� It copies the value from memory at the location indicated by the top of the
stack into the location specified in the POP instruction.

Let us pop the most recent value and see what effect this has on the stack, as
shown in figure 10.5.

Lower memory
locations

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

0 0 00

2 3 41

B C DA

F

Limits of
the stack

F F F Bottom of stack

locations
Higher memory

Top of stack

00DE

00DF

00DD

00DC

00DB

00DA

00D9

00D8

00D7

Figure 10.5 Our stack in memory after 1 POP operation

The top of the stack has now moved back to the location $00DD. It is worth
noting that, even though we have popped a value from the stack, the value
$1234 is still stored in memory location $00DD - it is not erased in any way.
If we were to push another value on to the stack, only then would the value
$1234 be overwritten with the newly pushed value.
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10.2.1 Introducing The Stack Pointer

One thing we still haven’t talked about is actually how we keep track of the
current top of the stack.

We could simply use another memory location to contain the address of the
top of the stack, but it so happens that using a stack is something we want to
do so much (we’ll see why when we cover subroutines later) that instead we
use a special register in our processor called the Stack Pointer , or SP, to store
the address of the top of the stack.

The stack pointer will, once it has been initialized, contain the address of the
current top of the stack. We say that the stack pointer points to the top of the
stack.

10.2.2 Stack Limitations

What would happen if we were to push so many values onto the stack that we
used more locations than we had set aside for our stack? We could overwrite
part of our program or data, and so cause the program to fail - this is known
as stack overflow.

10.3 Using Stacks

Now that we understand the basic use of a stack, let us write a program to
make use of a stack. We will write a program to reverse a list of numbers.

So, what do we want this program to do?

� We will store a list of values in memory, with the last value followed by
a 0 value, to indicate the end of the list (when we use a 0 value in this
way we often call it the terminator , although we could have chosen any
bit pattern to be our terminator). Note that this also means that the list of
values cannot include a 0;

� We will push each value in turn onto the stack, only stopping when we
read the terminator value in our list, indicating that we have reached the
end of the list and we have no more values to push onto the stack;

� Next, we will pop each value from the stack, writing it over the original list.
We know we have reached the end of the list because the first value that
we pushed onto the stack was a terminator value.

If we were to write this program in a higher level language we would have
something like this:
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initialize_the_stack_pointer;
push_terminator_onto_stack;

A = address_of_beginning_of_list;
while(value_held_at_A != 0) {

push_value_held_at_A;
A = A + 1;

}

// All values have now been placed on the stack
//

A = address_of_beginning_of_list;
B = first_popped_value;
while(B != 0) {

write_B_to_address_in_A;
A = A + 1;
B = next_popped_value

}

A few points worth noting are:

� The first two lines initialize the stack by setting where we want to put the
stack in memory, and by placing a terminator value onto the stack. Using
this terminator we will later know when to stop popping values from the
stack.

� The next section of the program deals with pushing values onto the stack.
The condition value_held_at_A != 0 means while the value held in
memory at the address held in the A register is not equal to 0 - in other
words, while we haven’t yet reached the terminator value.

� The final section deals with popping the values back off the stack - which
means that we pop values off the stack in the reverse order that they were
first placed on the stack. A stack is often termed in computing a LIFO (Last
In, First Out) data structure because of this feature.

We can, by using sequences, selections and iterations as described in the
previous chapter, then turn the high-level program into an assembly program.

* This program uses the stack to reverse a set of
* values stored in memory, overwriting the original order
*

ORG 0 * load program in memory at location 0
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MOVE #$D0,SP * initialize the stack pointer

MOVE #$00,A * push 0 onto the stack, we can use
PUSH A * this later to show us we’ve finished

* popping values

MOVE #list,A * A contains the address of the 1st.
* list element

pushloop MOVE (A),B * move the first element into B
CMP #$0,B * } if the number is 0 we have gone

* } through the list
BEQ end_push * }
PUSH B * otherwise push the value on to the

* stack
ADD #$01,A * get address of next list element
JMP pushloop * and run the loop again

end_push MOVE #list,A * A contains the address of the 1st.
* list element

poploop POP B * get the element from the stack
CMP #$0,B * if the number is 0 we have gone

* through the list
BEQ end_pop * so we need to end the loop
MOVE B,(A) * otherwise, write the popped value

* to memory
ADD #$01,A * get to next list element
JMP poploop * and run the loop again

end_pop HALT * stop the program on completion

* the list values
list DC.W 1234

DC.W 2345
DC.W 3456
DC.W 4567
DC.W 5678
DC.W 0000

A few things we haven’t seen before are:

� The instruction MOVE (A),B treats the value held in the A register as an
address in memory, it moves the value in memory at this location into the
B register;
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� The instruction MOVE #list,A transfers the address of the beginning of
the list to the A register. We say that we are using the A register to point
to the list;

� The instruction PUSH B places the contents of the B register on the stack,
and the instruction POP B removes the top value from the stack and places
it in the B register;

� The instruction DC.W $1234 is a directive to tell the assembler to store the
value in memory. DC.W is short for Define Constant - Word.

Examine this program to ensure that you understand it.

If we were to convert this program into machine code, we would end up with
the following:

ORG 0 0000 ORG 0 * load program in memory at location 0
A6D0 0000 MOVE #$D0,SP * initialize the stack pointer

0001
9000 0001 MOVE #$00,A * push 0 onto the stack, we can use
8C00 0002 PUSH A * this later to show us we’ve finished

0003 * popping values
0003

9012 0003 MOVE #list,A * A contains the address of the 1st.
0004 * list element
0004

9900 0004 pushloop MOVE (A),B * move the first element into B
8100 0005 CMP #$0,B * } if the number is 0 we have gone

0006 * } through the list
C30A 0006 BEQ end_push * }
8D00 0007 PUSH B * otherwise push the value on to the

0008 * stack
0001 0008 ADD #$01,A * get next list element
E004 0009 JMP pushloop * and run the loop again

000A
9012 000A end_push MOVE #list,A * A contains the address of the 1st.

000B * list element
8F00 000B poploop POP B * get the element from the stack
8100 000C CMP #$0,B * if the number is 0 we have gone

000D * through the list
C311 000D BEQ end_pop * so we need to end the loop
A900 000E MOVE B,(A) * otherwise, write the popped value

000F * to memory
0001 000F ADD #$01,A * get to next list element
E00B 0010 JMP poploop * and run the loop again
F000 0011 end_pop HALT * stop the program on completion

0012
0012 * the list values
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1234 0012 list DC.W 1234
2345 0013 DC.W 2345
3456 0014 DC.W 3456
4567 0015 DC.W 4567
5678 0016 DC.W 5678
0000 0017 DC.W 0000

You can now run the program, it’s held on the CD in the examples directory in
the file reverse.jas. Examine the contents of memory both before and after
you run the program. After running the program the list held between memory
locations $0012 and $0016 is now in reverse order.

It is worth remembering that we, the programmer, have to ensure that we don’t
overstep the limits of where we want the stack to be. If our stack (by pushing
too many values) overwrites another part of our program or our program data
then our program will cease to work correctly due to a stack overflow.

10.4 Introducing Subroutines

So far we have only seen relatively small programs, but what if our programs
had to perform an operation on many different values? How could we deal with
that?

Let’s look first at a high-level language example. Let’s imagine that we needed
to work out the total wages for three different workers. As things stand right
now, we would have to duplicate the part of our program that works out each
workers wages - so parts of our program will appear three times over.

Here is our program:

// employee 1
hourly_rate = employee1_hourly_rate;
hours_worked = employee1_hours_worked;
employee1_wages = hourly_rate * hours_worked;

// employee 2
hourly_rate = employee2_hourly_rate;
hours_worked = employee2_hours_worked;
employee2_wages = hourly_rate * hours_worked;

// employee 3
hourly_rate = employee3_hourly_rate;
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hours_worked = employee3_hours_worked;
employee3_wages = hourly_rate * hours_worked;

However there is a better method that we can use, rather than just have
duplicate sections within our program. This is by using subroutines.

A subroutine can be thought of as a mini-program within our program, that we
can make use of as many times as we like. If we were to use subroutines in
the program above, it would look something like this:

subroutine wages (hourly_rate, hours_worked) {
emp_wages = hourly_rate * hours_worked;
return(emp_wages);

}

employee1_wages = wages(employee1_hourly_rate, employee1_hours_worked);

employee2_wages = wages(employee2_hourly_rate, employee2_hours_worked);

employee3_wages = wages(employee3_hourly_rate, employee3_hours_worked);

A number of points are worth noting.

� The subroutine is defined in its own section of the program, and it is exe-
cuted only when it is called. The subroutine wages takes two parameters
(known as formal parameters) called hourly rate and hours worked. It
returns a value called emp wages. We’ll cover how this works in a moment;

� The main part of the program is where we work out the wages for each
employee. If we looked at the first employee’s details, you can see that the
wages subroutine is used and takes two parameters (the values passed
to the subroutine, known as actual parameters). When the subroutine has
completed, the variable employee1 wages will be set to whatever value
the subroutine has returned.

When we make use of a subroutine (or make a subroutine call as it is
sometimes known), the actual parameters map onto the formal parame-
ters for the subroutine to make use of. For example, in the above example
we pass two parameters to the subroutine, called employee1 hourly rate
and employee1 hours worked. These map onto the formal parameters of
hourly rate and hours worked, and we can treat them effectively within the
subroutine as the same as the parameters passed to the subroutine.
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So, imagine that

employee1 hourly rate = 10

and

employee1 hours worked = 5

These values are passed to the subroutine, so

hourly rate = 10

and hours worked = 5

Within the subroutine the calculation

10 * 5

is executed, with the variable emp wages being set to the result, which is
50. Once the subroutine completes this value is returned to the variable
employee1 wages in the main program.

Both of the above programs look roughly the same size, but if we were to work
on larger programming problems you would see that the use of subroutines
greatly simplifies the programmer’s task. Also, the use of subroutines maps
very well with the process of stepwise refinement as we discussed briefly in
the previous chapter, and as we will see in a larger programming example in
chapter 15.

10.5 Implementing Subroutine Calls Using
Stacks

Subroutines in assembly language are implemented using the JSR and RTS
instructions and we’ll see what each of these does in a moment.

When we make use of a subroutine it must follow the following structure:

ORG 0 * load program in memory at location 0
MOVE #$DF,SP * initialize the stack pointer

. * the main program

.
JSR subroutine1 * demonstrate a subroutine call
.
.
HALT * end our main program
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subroutine1
. * here is our subroutine code
.
RTS * ending with a return from subroutine

As we can see, subroutines are called with a JSR (which means jump to sub-
routine) instruction, and the end of the subroutine must have an RTS (which
means ReTurn from Subroutine) instruction.

So what has the use of subroutines to do with stacks? Simply this: without
stacks we couldn’t write programs, whether high-level or assembly programs,
that make use of subroutines. This is because when we jump to a subroutine
we need to remember where we need to return to in our program once the
subroutine has completed. It is the stack that is used to store the value of the
PC when the JSR instruction is executed, and to restore the PC from the stack
when the RTS instruction is executed.

We can see this by looking firstly at the micro-instructions that make up a JSR
instruction. This particular instruction is a JSR address:

� ALUx←[PC]
� MDR←[ALUx]
� MAR←[SP ]
� M [MAR]←[MDR]
� ALUx←[SP ]
� ALUr=[ALUx]− 1
� SP←[ALUr]
� PC←[IR(operand)]

In the JSR instruction the PC is saved on the stack in the first four micro-
instructions, the next three micro-instructions update the SP to point to the
next free stack location, and finally the last micro-instruction updates the PC.

Next we can see how the value of the PC is popped from the stack in the
RTS instruction. Execution of the program will now continue from the next
instruction after the original JSR.

� ALUx←[SP ]
� ALUr=[ALUx] + 1
� SP←[ALUr]
� MAR←[SP ]
� MDR←[M [MAR]]
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� PC←[MDR]

In the RTS instruction we can see that the first three micro-instructions decre-
ment the SP, and the final three micro-instructions update the PC with the
saved value from the stack.

We can pass parameters to subroutines via the use of the A and B registers,
the stack, or named memory locations.

Subroutines can also be called by other subroutines, this is called nesting.
A common programming error is for programmers to forget to place RTS
instructions at the end of subroutines - leading to buggy code.

Many subroutines tend to be useful in many different programs, and so it is
normal practice to include the most useful subroutines in a library. A library is
a file that can be included in our programs with a special directive called USE.
We’ll see this in chapter 14.

10.6 Using Subroutines In Assembly
Language

Finally in this chapter, we will write a program to make use of subroutines. This
program is a modification of the Hello World program from chapter 1, it has
been updated to include a subroutine called putchar to write a character on
the screen.

The main program places each data word from the sequence of characters
to be printed into the A register prior to calling putchar. The sequence of
characters is in a format known as unpacked ASCII - this means that each
character (remember that an ASCII character is 7 bits wide) is stored in a 16-
bit word. This is a very easy format to work with. Another format, known as
packed ASCII, places two ASCII characters into a 16-bit word - packed ASCII
requires more processing to print.

The subroutine putchar is designed to print the character that has been trans-
ferred into the A register by the main program. It does this in such a way that
only the character defined in the lo-byte of the A register is sent to the I/O
device. We will cover I/O in greater depth in chapter 12.

Here is the program:

* Memory mapped I/O
ODR EQU $E2 * } definitions
OSR EQU $E3 * }
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ORG 0 * load program in memory at location 0
MOVE #$D0,SP * initialize the stack pointer

MOVE #data,B * point at data
next MOVE (B),A * get a character

CMP #$0,A * is this the terminator?
BEQ done * yes - stop
JSR putchar * call the print sub-routine
ADD #$1,B * increment data address
JMP next * repeat loop

done HALT * halt the program

*
* putchar routine (char in lo-byte of A)
*
putchar PUSH B * save B on the stack
_putch1 MOVE OSR,B * move OSR to B

CMP #$00,B * can we print ?
BEQ _putch1 * if not, grab OSR again
MOVE A,ODR * otherwise print lo-byte of A
POP B * retrieve B from the stack
RTS * return from subroutine

* data string
* (stored as unpacked ASCII)
data DC.W 0048 * H

DC.W 0065 * e
DC.W 006C * l
DC.W 006C * l
DC.W 006F * o
DC.W 0020 *
DC.W 0057 * W
DC.W 006F * o
DC.W 0072 * r
DC.W 006C * l
DC.W 0064 * d
DC.W 0021 * !
DC.W 000D * <cr>
DC.W 000A * <lf>
DC.W 0000 * Terminator

We can take note of a number of points in this program:
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� The main program is quite short, it begins with a couple of definitions
(EQU, which stands for equates which is an assembler directive for con-
stants (values in our program that don’t change) used in the putchar
subroutine. The main program includes one call to our subroutine;

� After the main program the subroutine is defined, and we can see some
interesting features within it. Firstly, it is important to note that the sub-
routine ends with an RTS statement. Next, we can see that a parameter
is passed to the subroutine in the A register - the ASCII character to be
printed;

� We can also see a label ( putch1) that we only want to be used within the
subroutine. By convention we prefix an underscore to any label that we
want to limit in usage to the subroutine. Please note that this doesn’t stop
a programmer from using the label from anywhere in a program - it is just
bad practice to do so;

� It is worth noticing that we make use of the B register inside the subroutine
as temporary storage and, as the B register could be used by the main
program, it is good practice to push the current value of the B register to
the stack before we use it in the subroutine, and to pop the value from the
stack prior to returning to the main program;

� Finally the data is listed in the unpacked ASCII format, for us to print out
as our message.

This program can be found on the CD - it is called subroutines.jas. Run
this program in black-box mode to see what it does. Once it has completed
running, look at the stack area to see what has been written there.

We can also see a useful program structure emerging in this example. This
structure is:

� Definitions;

� The main program;

� Subroutine definitions;

� Data storage.

We will refine this structure in coming chapters.

CHAPTER SUMMARY

The concept of the stack

� A stack is an example of an abstract data type;

� We push an object onto a stack;
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� We pop an object from a stack.

Hardware support for the stack

� To keep track of the top of stack we make use of a specialist register, the
stack pointer;

The concept of the subroutine

� A subroutine is a section of program code that we can call from other
locations in the program;

� When we call a subroutine, the contents of the PC are stored on the stack
prior to the PC being set with the address of the subroutine;

� When we exit a subroutine, the PC is updated from the stack.

Using subroutines in assembly language programs

� We call subroutines using the JSR family of instructions;

� We return from a subroutine with an RTS instruction.

SELF TEST QUESTIONS

1 Modify your sorting program from the previous chapter’s self test ques-
tions to use a subroutine to sort the two numbers.

2 Look at the file reverse.jas. What would we need to change so that the
program could sort 10 values instead of the current 5 values?

3 Add a subroutine to subroutines.jas (within putchar) to count the
number of letters that putchar prints. Store the result in the A register
when the program terminates.

EXERCISES

1 Modify reverse.jas such that the stack pointer is set to memory location
$0018. Trace through the program and see what happens - does the
program complete successfully? If not, why not?

2 Modify your answer to self test question 3 to allow putchar to only be
used a maximum of 10 times within the program.

3 Modify subroutines.jas so that the message is printed five times.
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Addressing Modes

CHAPTER OVERVIEW

We introduce the concept of addressing modes and their particular
uses within our assembly language programs.

This chapter includes:

� An introduction to addressing modes, including immediate, reg-
ister direct, register indirect, memory direct, memory indirect,
register indexed and relative addressing;

� How we can build up more complex instruction addressing
modes;

� An addressing example.

11.1 Introducing Addressing Modes

An addressing mode is how we tell the processor where to find the data that
it needs to use with each instruction. There are many different forms of ad-
dressing, the most common being immediate addressing, direct addressing,
indirect addressing, indexed addressing and relative addressing. We will look
at these each in turn.

Every operand to an instruction has an addressing mode, so to understand
each mode we will look at a set of instructions where only one parameter is
different in each instruction.

To look at each we will examine the MOVE instructions available to us in the
JASP instruction set that place their result in the A register. If we were to
examine this set in appendix B, we would see that we could perform a MOVE
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operation with the result being placed in the A register using the following
instructions:

� MOVE #data,A

� MOVE addr,A

� MOVE (addr),A

� MOVE B,A

� MOVE (B),A

� MOVE B+addr,A

We have already seen some of these addressing modes, we will look at each
in turn.

11.2 Immediate Addressing

Immediate addressing is the most simple form of addressing, and we have
already seen this a number of times in example programs so far.

Immediate addressing takes the following form:

� MOVE #data,A - where data is the data value to use.

Immediate addressing is where we specify the value we wish to put into the
register as an operand to the instruction. Figure 11.1 shows the instruction
MOVE #$0F,A where we want to set the A register to contain the hexadecimal
value $0F. We can always tell when immediate addressing is used as the
parameter will always be preceded by a hash character (#).

MOVE #$0F,A

0 0 0 F

The A Register

0F

Figure 11.1 An immediate addressing example

With immediate addressing, the value from the IR(operand) is copied into the
A register - which actually limits the size of the number that we can place in
the A register using this instruction. Why is this? It is because the IR(operand)
is 8-bits wide (as we have seen previously) whereas the A register is 16-bits
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wide. The hi-byte of the A register is set to zero. As the IR(operand) is only 8
bits wide, it means that we can only move values in the range 0 (000000002)
through to 255 (111111112) into the A register using this form of addressing.
If we want to move larger values in, then we must use a different form of
addressing. This is a limitation of the implementation of the standard JASP
instruction set.

11.3 Direct Addressing

Direct addressing is where we can transfer a value from one location, either
in a register or in memory, to our destination register. Let us look at each of
these in turn.

Direct addressing takes the following forms:

� MOVE B,A - Register direct addressing.

� MOVE addr,A - Memory direct addressing, where addr is the address to
use.

11.3.1 Register Direct Addressing

In figure 11.2 we can see an example of register direct addressing.

0 0 0 F

The A Register

MOVE B,A

0 0 0 F

The B Register

Figure 11.2 A register direct addressing example

We can simply copy the value from one register to another.

11.3.2 Memory Direct Addressing

Memory direct addressing is very similar to register direct addressing, as we
can see in figure 11.3.
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MOVE $0F,A
Memory

4 5 6 7

F 0 0 0

2 3 4000E

0010

000F

1

F 0 0 0

The A Register

Figure 11.3 A memory direct addressing example

The address (we can tell it is an address because it does not have a hash
prefix) is used to look up a value in memory, which is then transferred to the
target location.

Note that in JASPer this form of addressing also suffers from the size limitation
of the IR(operand), and so we can only address memory from $0000 to $00FF.

11.4 Indirect Addressing

Indirect addressing is a little more complex than direct addressing. Using indi-
rect addressing we use the value stored in a register or in a memory location
to store the address of the value that is then moved into the target location.

We will look at register indirect addressing and memory indirect addressing in
turn. We can always see that indirect addressing is used when we see round
brackets around an operand.

Indirect addressing takes the following forms:

� MOVE (B),A - Register indirect addressing.

� MOVE (addr),A - Memory indirect addressing.

11.4.1 Register Indirect Addressing

We can see an example of register indirect addressing in figure 11.4.
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Memory

4 5 6 7

F 0 0 0

2 3 4

MOVE (B),A

000E

0010

000F

1

0 0 0 E

The B Register

1 2 3 4

The A Register

Figure 11.4 A register indirect addressing example

In this example we can see that the instruction MOVE (B),A means:

� Look up memory at the location stored in the B register. This gives us the
value $1234;

� Transfer that value into the A register.

11.4.2 Memory Indirect Addressing

Memory indirect addressing is again similar to register indirect addressing,
and our example for this mode is shown in figure 11.5.

Memory

4 5 6 7

0 0 1 0

2 3 4000E

0010

000F

1

4 5 6 7

The A Register

MOVE ($0F),A

Figure 11.5 A memory indirect addressing example

In this example we can see that the instruction MOVE ($0F),A means:

� Look up memory at the location stored in the memory location $0F. This
gives us the value $0010;
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� Use the value $0010 as a memory address, obtaining the value $4567;

� Transfer that value into the A register.

Note that this mode in JASPer also suffers from the size limitation of the
IR(operand), and so the initial memory address can only address memory
from $0000 to $00FF.

11.5 Indexed Addressing

With indexed addressing we will only consider register indexed addressing.

Indexed addressing takes the following form.

� MOVE B+addr,A - Indexed addressing, the address of the memory location
is formed by adding the contents of the B register to addr.

11.5.1 Register Indexed Addressing

An example using register indexed addressing is shown in figure 11.6.

4 5 6 7

The A Register

Memory

4 5 6 7

0 0 1 0

2 3 4000E

0010

000F

1

MOVE B+$0F,A

0 0 0 1

The B Register + $0F

Figure 11.6 A register indexed addressing example

In this example we can see that the instruction MOVE B+$0F,A means:

� Add the value stored in the B register to $0F to obtain the address $0010;

� Look up memory at the location stored in the memory location $0010. This
value is $4567;

� Transfer that value into the A register.
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This mode of addressing is very useful to process a set of values held in
contiguous memory locations (also known as an array), as the value in B can
be quickly and easily increased by 1 on each iteration (B is known as the index,
while the given address - $0F in our example - is known as the base address).

This form of addressing is sometimes given the forms:

� MOVE addr(B),A

� MOVE (B)addr,A

But it means the same thing.

11.6 Relative Addressing

Relative addressing is often used in branching. For example, so far we have
only used branch instructions of the form:

� JMP addr

Where addr is the address to branch to. With relative addressing we can say
the equivalent of ‘branch 3 instructions forward’, or ‘branch 10 instructions
back’. Such an instruction is defined as:

� JMP #dis

Where dis is the displacement value, that is, the number of instructions we
wish to jump forward or back within the program. The displacement is added
onto the PC during the instruction execution - you must remember that the
PC has already been incremented by 1 during the fetch cycle, and adjust your
displacement accordingly.

11.7 More Complex Instructions

Other forms of addressing are used in larger processors, but they tend to
be extensions of what we have already seen, or a way in which multiple
instructions can be combined into single instructions.

For example, some processors allow instructions of the form:

� MOVE (B)+,A

which means, copy the value pointed to by register B to register A (as in
register indirect addressing), but the plus sign indicates that this instruction
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will then add one to the value stored in the B register. This is known as
post-incrementing (adding one to the register after the main function of the
instruction has executed). If the plus sign is shown before the symbol for the
B register, as in

� MOVE +(B),A

This is known as pre-incrementing, as 1 is added to the B register before the
address stored in the B register is used to access the value to be transferred
to the A register. Post-decrementing (taking 1 from the contents of the register
after the main function of the instruction), or pre-decrementing (taking 1 off
before the main function of the instruction) is also possible. As shown here:

� MOVE (B)-,A This is post-decrementing

� MOVE -(B),A This is pre-decrementing

With our processor we can perform the function of

� MOVE (B)+,A

with two instructions as follows:

� MOVE (B),A

� ADD #$01,B

It is worth mentioning that instructions can be made that are far more complex.

For example, we could define an instruction of the form:

� MOVE (B)+,(addr)

This means the following:

� Look up memory at the address held in the B register (register indirect
addressing);

� Move that value to the memory location obtained by looking up the address
held in the second operand (memory indirect addressing);

� Write the value into memory at the memory address held in the second
operand;

� Add one to the B register (post-incrementing B).

However, this instruction too can be built up from the modes that we have
already discussed. We will return to this subject again in chapter 16 where
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we will see how to write our own instructions rather than having to rely on the
standard instruction set.

11.8 An Addressing Example

Here is an example program that tests all the common modes of addressing
for the JASPer processor.

* This program demonstrates the addressing
* modes used by our processor
*

ORG 0 * load program in memory at location 0

MOVE #$0E,B * for use in the examples

MOVE #$0F,A * immediate addressing
MOVE B,A * register direct addressing
MOVE $0F,A * memory direct addressing
MOVE (B),A * register indirect addressing
MOVE ($0F),A * memory indirect addressing

MOVE B+$01,A * register indexed addressing

HALT * should not be needed as you should
* trace through this program!

* the data for the instructions to use
ORG 0E
DC.W 1234 *
DC.W 0010 *
DC.W 4567 *

This program is called addressing.jas and is available on the CD. Set the
JASPer animation to off, and execute the program an instruction at a time
using the ‘trace’ button. Prior to executing each instruction, try to figure out
what you think the A register will be set to.
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CHAPTER SUMMARY

Addressing modes

� Immediate addressing, e.g. MOVE #$03,A - a # indicates this mode;

� Register direct addressing, e.g. MOVE B,A - only registers listed as
operands indicate this mode;

� Memory direct addressing, e.g. MOVE $03,A - no # indicates this mode;

� Register indirect addressing, e.g. MOVE (B),A - only registers listed as
parameters, and round brackets used, indicates this mode;

� Memory indirect addressing, e.g. MOVE ($03),A - no # and round brackets
used indicates this mode;

� Register indexed addressing, e.g. MOVE B+$03,A - no # and a + sign
indicates this mode;

� Relative addressing, e.g. JMP #$03 - a # used in branch instructions
indicates this mode.

Building instruction addressing modes

� Other addressing modes include pre and post incrementing and pre and
post decrementing;

� Some processors have many dozens of addressing modes - for our simple
processor we can simply use multiple assembly instructions.

SELF TEST QUESTIONS

1 Modify a copy of reverse.jas from the last chapter such that the
JMP addr instructions are replaced with JMP #dis instructions that use
relative addressing.

2 Write a program to add $12D5 to $073A. Which addressing modes can
you use to do this?

3 Write a program to add a sequence of data values, storing the result in
the A register. Use register indexed addressing to access the sequence
of data values.

EXERCISES

1 Write a program that stores $1234 in memory address $0100. Which
addressing modes can you use to do this?
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2 Write a program to add a sequence of data values, storing the result in
the A register. Use register indirect addressing to access the sequence
of data values.

3 Modify your answer to exercise three to store the list of values in memory
starting at memory address $0100. What addressing modes can you use
to access these values?
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Input/Output

CHAPTER OVERVIEW

It’s time to allow our processor to talk to the rest of the world, at least
in some rudimentary sense. To do this we introduce the concept of
I/O.

This chapter includes:

� The concept of memory-mapped peripheral devices;

� The concepts of polled I/O, interrupt driven I/O and Direct
Memory Access (DMA) - we look at each I/O method in turn,
concentrating on the use of polled I/O;

� A discussion of the memory-mapped peripherals available to
JASPer.

12.1 Introducing Input/Output

To pass data to programs we’ve had to place it directly in memory, and to see
the results of our programs once they are executed we’ve had to look at the
contents of memory. This allows us to see what our program has done, but
it’s not exactly very practical. Wouldn’t it be easier if we could connect some
devices to our processor to allow us to more easily input data and output data?
We tend to call devices that we want to connect to our processor peripherals
(because they are peripheral to our processor system).

A computer system can use many different types of peripherals, if we were to
list the most common, we would end up with a list like this:

� Keyboard;
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� Mouse;

� Modem (to connect to the telephone line);

� Network card (to connect to a network, like the Internet);

� Graphics card (to connect to a monitor screen);

� Sound card;

� Games joystick interface card;

� Hard disk (for storage - but still effectively a peripheral);

� DVD/CD-ROM drives.

Of course, this list isn’t complete, but we can see the sort of peripherals that
we mean. We can pretty much group these sort of peripherals into those that
send input to our computer system, those that use output from our computer
system, and those that do both.

We will concentrate mostly on one of the most simple peripherals, an I/O de-
vice which gives us the ability to use a keyboard connected to our processor
system (to send characters to our system) and a monitor attached so we can
see output from our system (like we have already seen with the Hello World
program back in chapter 1).

12.1.1 Connecting Peripherals

We need to think about how to physically connect our peripheral to our
processor system, and then how to use them within our programs.

We need to connect our peripheral to:

� The address bus - to pass addresses to the peripheral;

� The data bus - to pass data to and from the peripheral;

� The control bus - to send control signals to the peripheral.

A very common way of doing this is to build the peripheral device into the
memory map. We had a glimpse of how this could be done in chapter 7. We
saw in that chapter that we could build a complete memory by connecting
up many different memory chips to build a larger memory. We can also wire
in other forms of devices, other than memory chips, that we can use as if
they were like memory but can actually perform other tasks - such a device is
known as a memory-mapped device. We can actually see this in the memory
map, shown in figure 12.1.
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00FF
0100

0FFF
1000

FFFF

00F8
00F7

0000

00DF
00E0
00E1
00E2
00E3
00E4

00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0

Not installed in
default configuration

User programs and data

RAM

Year
Month
Day

Reserved
Timer

Hour
Minute 
Second

System
Clock

Interrupt vector table

Reserved

Description

IDR
ISR
ODR
OSR Memory mapped

I/O Device

RAM

User programs and data

Address

Peripheral box communication

Figure 12.1 The JASPer memory map

The part of the memory map that we are interested in is the area between
$00E0 and $00E3, as this is where our memory-mapped device (an I/O device)
is situated. These four memory locations are not actually memory at all, but
can be used in the same manner as memory - so making I/O easy to use
without introducing any new complexities to our processor.

When we want to use our peripheral, there are three steps that we need to
follow to ensure that our processor communicates with the device correctly.
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We need to:

1 Select the device we want to communicate with;

2 Transfer any data to or from the peripheral device;

3 Arrange synchronization for the I/O operation (we’ll see what this means
shortly).

We’ll look at each of these points in detail later.

There are three key forms of I/O. The first form of I/O we will look at is called
polled I/O, then we will look at interrupt driven I/O, and then finally we will look
at Direct Memory Access (DMA). In this chapter we will spend the most time
looking at polled I/O.

12.2 Polled I/O

The device situated in the memory map between locations $00E0 and $00E3
is actually a polled I/O device. Polled I/O is the simplest form of I/O that we
can use.

We can imagine that we have wired our I/O device into the memory map for
us to use the peripheral - and to communicate with our device we can do the
following.

� Firstly, the CPU puts the device address on the address bus (just like
addressing memory). This meets point one above;

� Next, the data is transmitted on the data bus to or from the device. To do
this the device uses a device data register. This meets point two;

� Finally we perform synchronization, often known as hand-shaking (more
on this in a moment) using a device status register. This meets point three.

We generally put all the circuitry to control these tasks on a single I/O interface
chip, which is an integrated circuit built just for this type of task. The memory
map of our polled I/O device is shown in figure 12.2.

00E3

00E2

00E1

00E0

Output Status Register (OSR)

Output Data Register (ODR)

Input Status Register (ISR)

Input Data Register (IDR)

Figure 12.2 The polled I/O device
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As you can see, this device has four registers, that we can use in the same
way as accessing memory.

� Two of these registers deal with input - the Input Status Register (ISR) and
the Input Data Register (IDR);

� Two of these registers deal with output - the Output Status Register (OSR)
and the Output Data Register (ODR).

Each of these is 16 bits wide, exactly the same as the rest of the memory
locations in the memory map, so that the device can be accessed exactly like
memory. It is worth remembering that these I/O data registers only use the
lowest seven bits to transfer characters, while the status registers only use the
LSB to indicate status.

To use this device we can use a very simple protocol which demonstrates why
this is called polled I/O. Let us imagine that we want to print a character on the
monitor screen, how could we go about this? Our processor needs to do the
following:

� When the peripheral is ready (not still dealing with a character sent pre-
viously), we say that the peripheral is idle. When it is in an idle state, the
LSB in the OSR will be set to 1;

� If the OSR is set to one, the processor sends a character to the device’s
ODR. While the processor is dealing with this character the peripheral sets
the LSB of the OSR to 0;

� While the LSB of the OSR is still set to 0 we cannot send another character
to this device. We can check the OSR many times (called polling) until it
is set back to 1 by the peripheral to indicate that the device is in an idle
state;

� Once the peripheral indicates that it is ready, with the LSB of the OSR set
to 1, we can then send another character.

Input using polled I/O works in a similar way as the output protocol shown
above.

Why do we need such a protocol? Many devices work at different speeds, and
if we were not to follow this polled approach then the communication might not
work successfully - we will see examples of this shortly. If you imagine that our
output device was printing the sent character on a very slow printer, it could
be that the processor has to check the OSR of the peripheral many thousands
of times before it can send the next character, as our processor is so much
faster.
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12.2.1 A Polled I/O Example Program

First of all we will look at some programs that use polled I/O incorrectly to
understand the most common mistakes, and then we will examine a program
that uses polled I/O correctly.

The programs listed here are designed to show both the flawed and the correct
way to use polled I/O. When executed, they attempt to take ten key presses
from the user, storing each character sent to the processor in a storage area,
and then finally they attempt to print out all ten characters to the screen.

Incorrect Input

Below we have an example of a program that uses polled I/O incorrectly for
input. Reading through this program you will see that the ISR is never checked
to see if the input device is ready with a character in the IDR. Instead, the IDR
value is moved directly to the character storage area of the program.

Figure 12.3 JASPer - after running the program with incorrect input
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* A demonstration of polled I/O
*
* This program is supposed to read 10 characters from the keyboard
* and then print them all out once they’ve been entered
*
* The ISR is not used. Therefore the input will not
* work correctly.
*
OSR EQU $E3 * Output Status Register (OSR)
ODR EQU $E2 * Output Data Register (ODR)
ISR EQU $E1 * Input Status Register (ISR)
IDR EQU $E0 * Input Data Register (IDR)

ORG 0
MOVE #$00,B * count is storage for our
MOVE B,count * counter value

loop MOVE IDR,A * read the char

MOVE count,B * the address to write the
ADD #data,B * value to is count+data
MOVE A,(B) * write the char in there

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ gotchars * and move to next section if we have
MOVE B,count * otherwise write count back
JMP loop * and get another char

gotchars MOVE #$00,B * count is storage for our
MOVE B,count * counter value

write MOVE OSR,A * get OSR
CMP #$00,A * OSR 1 can print, OSR 0 can’t print
BEQ write * not yet, wait some more

MOVE count,B * the address to read the
ADD #data,B * value from is count+data
MOVE (B),A * get the char in there
MOVE A,ODR * print the char

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ done * and move to end if we have
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MOVE B,count * otherwise write count back
JMP write * and write another char

done HALT * done

count DS.W $01 * the counter
data DS.W $0A * storage for our 10 characters

If we were to run this program (it can be found on the CD in the directory
for this chapter, called polled-io-bad-input.jas), then the program would
output something similar to that in figure 12.3.

NOTES
If you fail to use correct
polled I/O for input, the
same character can be
read many times. As you can see, we don’t have the output that we would like. Instead we see

a sequence of ‘square boxes’, this is the character that JASPer displays when
it attempts to print a non-printable character. It prints this because the initial
IDR value of $00 is being used, before any key has been pressed.

Incorrect Output

So now let’s take a look at what happens when we fail to use polled I/O with
the output. Here we have a program that does not poll the OSR in order to
check if the output device is ready to receive another character.

* A demonstration of polled I/O
*
* This program is supposed to read 10 characters from the keyboard
* and then print them all out once they’ve been entered
*
* The OSR is not used. Therefore the output will not
* work correctly.
*
OSR EQU $E3 * Output Status Register (OSR)
ODR EQU $E2 * Output Data Register (ODR)
ISR EQU $E1 * Input Status Register (ISR)
IDR EQU $E0 * Input Data Register (IDR)

ORG 0
MOVE #$00,B * count is storage for our
MOVE B,count * counter value

loop MOVE ISR,A * Get ISR
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CMP #$00,A * is a char available?
BEQ loop * no - wait some more
MOVE IDR,A * read the char

MOVE count,B * the address to write the
ADD #data,B * value to is count+data
MOVE A,(B) * write the char in there

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ gotchars * and move to next section if we have
MOVE B,count * otherwise write count back
JMP loop * and get another char

gotchars MOVE #$00,B * count is storage for our
MOVE B,count * counter value

write MOVE count,B * the address to read the
ADD #data,B * value from is count+data
MOVE (B),A * get the char in there
MOVE A,ODR * print the char

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ done * and move to end if we have
MOVE B,count * otherwise write count back
JMP write * and write another char

done HALT * done

count DS.W $01 * the counter
data DS.W $0A * storage for our 10 characters

If we were to run this program (also available on the CD, called
polled-io-bad-output.jas), using the input values 1, 2, 3, 4, 5, 6, 7, 8, 9

NOTES
If you fail to use correct
polled I/O for output,
characters will not all be
printed, data will be lost.

and 0 we would expect the output appearing on the screen to be 1234567890.
This doesn’t happen as some data is lost, resulting in the output shown in
figure 12.4.
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Figure 12.4 JASPer - after running the program with incorrect output

Using Polled I/O Correctly

Finally, here is a program that uses polled I/O correctly.

* A demonstration of polled I/O
*
* This program reads 10 characters from the keyboard
* and then prints them all out once they’ve been entered
*
OSR EQU $E3 * Output Status Register (OSR)
ODR EQU $E2 * Output Data Register (ODR)
ISR EQU $E1 * Input Status Register (ISR)
IDR EQU $E0 * Input Data Register (IDR)
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ORG 0
MOVE #$00,B * count is storage for our
MOVE B,count * counter value

loop MOVE ISR,A * Get ISR
CMP #$00,A * is a char available?
BEQ loop * no - wait some more
MOVE IDR,A * read the char

MOVE count,B * the address to write the
ADD #data,B * value to is count+data
MOVE A,(B) * write the char in there

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ gotchars * and move to next section if we have
MOVE B,count * otherwise write count back
JMP loop * and get another char

gotchars MOVE #$00,B * count is storage for our
MOVE B,count * counter value

write MOVE OSR,A * get OSR
CMP #$00,A * OSR 1 can print, OSR 0 can’t print
BEQ write * not yet, wait some more

MOVE count,B * the address to read the
ADD #data,B * value from is count+data
MOVE (B),A * get the char in there
MOVE A,ODR * print the char

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ done * and move to end if we have
MOVE B,count * otherwise write count back
JMP write * and write another char

done HALT * done

count DS.W $01 * the counter
data DS.W $0A * storage for our 10 characters

When we run this program (again available on the CD, as polled-io.jas),
with the input values 1, 2, 3, 4, 5, 6, 7, 8, 9 and 0 we would expect the output
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1234567890, and as we can see in figure 12.5, this is what we get - finally we
are using polled I/O for both input and output correctly.

Figure 12.5 JASPer - after running the program using correct polled I/O

Polled I/O is very wasteful of processor clock cycles, but if the processor does
not need to be doing anything else, it really doesn’t matter. A method exists
that can be more complicated than using polled I/O, but is much more efficient.
This is interrupt driven I/O which we briefly discuss next.

12.3 Interrupt Driven I/O

The idea behind interrupt driven I/O is substantially different from the concept
of polled I/O. Instead of constantly checking a device to see if it is ready to
communicate, with interrupt driven I/O the processor can be sent a signal by
a device when it is ready to communicate with the processor.
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Interrupt driven I/O is much more efficient than polled I/O, as it depends on
the peripheral to signal to the processor when it is ready to communicate. This
means that the processor only has to deal with the peripheral at the moment
that it is ready to send or receive data, so no polling is required.

Interrupt driven I/O depends on the implementation of an interrupt mechanism,
and we’ll examine such a mechanism in chapter 13.

We won’t spend any more time now looking at interrupt driven I/O, as we will
look at the interrupt mechanism itself in detail in the next chapter.

12.4 I/O Using Direct Memory Access

The third of the three I/O methods is called Direct Memory Access (or DMA). It
is quite different from the two previous methods, in that although the process
is controlled by the processor, the data does not actually pass through the
processor as it did using other I/O methods.

We would use DMA to, for example, transfer large amounts of data between
a CD and a sound card. Within DMA the processor allows the two devices to
talk directly to each other using the data bus. The processor controls the data
transfer, but the data does not pass through the processor. This is a good idea
for a large amount of data as it is much faster than if the data actually had to
route from one device to another via the processor itself.

JASPer does not make use of DMA, as it does not show any fundamental as-
pects that differ from before, apart from a speed increase. We will not mention
DMA again in this book.

12.5 Other Memory-Mapped Devices

JASPer has two other peripherals within its memory map, a system clock and
an I/O device that can communicate with an external peripherals box.

12.5.1 The System Clock

The system clock resides in the memory map between memory locations
$00E8 and $00EF. Using the clock we can access the current hour, minute,
second, day, month or year - by accessing the correct memory location. The
clock also has a facility to trigger interrupts at specified intervals.

We will use the clock, and its interrupt facility, in the next chapter.
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12.5.2 The Peripheral Box

The peripheral box is an external device with a number of input and output
devices built into it. These include LEDs, digital read outs, a potentiometer
and a buzzer.

Figure 12.6 A clock display running on the JASPer peripheral box - a PDA is
included to give scale

CHAPTER SUMMARY

The concept of memory-mapped peripheral devices

� Peripherals need to connect to the data bus, the address bus and the
control bus;

� Peripheral devices can be built into the memory map in a similar way to
building in memory chips;
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The concepts of I/O

� Polled I/O is the simplest form of I/O. We need to use a polling loop to
successfully use such a device;

� If we fail to use correct polled I/O for input, then the same character can be
read multiple times;

� If we fail to use correct polled I/O for output, characters will not all be
printed, data will be lost;

� Polled I/O is very inefficient;

� Interrupt driven I/O relies on the implementation of an interrupt mechanism.
It is much more efficient than polled I/O;

� Direct Memory Access does not pass data through the processor, although
the processor controls the operation.

The memory-mapped peripherals in JASPer

� JASPer has a memory-mapped I/O device, system clock and an I/O device
for a peripheral box all built into its memory map.

SELF TEST QUESTIONS

1 Modify a copy of the polledio.jas program so that a space character is
printed between each character of the output.

2 Write a program to read in lowercase characters from the keyboard, ter-
minated by a space character. As each character is input it should be
printed as the uppercase equivalent of the letter. For example, typing the
letter ‘a’ should result in a ‘A’ being printed. Use the ASCII table in chapter
2 to determine the connection in the ASCII character set between upper
and lowercase letters.

3 Write a program the use inputs a character in the range ‘0’ to ‘9’. The
program must then print out a corresponding number of asterisks. For
example, if the user enters ‘2’ then ** is printed.

EXERCISES

1 Write a program to read in a number of characters, and then prints out
the characters in the reverse order to what they were typed. Hint, limit the
number of characters that can be entered to 10.

2 Write a program to read in uppercase characters from the keyboard, ter-
minated by a space character. As each character is input it should be
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printed as the lowercase equivalent of the letter. For example, typing the
letter ‘A’ should result in a ‘a’ being printed.

3 Write a program where the use inputs a character in the range ‘0’ to ‘9’.
This character must be converted into it’s associated numeric value and
then stored in the A register. For example, if the user types a ‘9’ character,
then the A register should be set to $0009.
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The Interrupt
Mechanism

CHAPTER OVERVIEW

In this chapter we introduce the concept of the interrupt mechanism.
We describe an implementation of an interrupt mechanism, and how
interrupts can be used within our processor.

This chapter includes:

� The concept of the interrupt;

� The concept of the interrupt mechanism;

� Comparing the use of subroutines with interrupts;

� How interrupts are used within our processor;

� The features of more complex interrupt mechanisms.

13.1 Introducing Interrupts

Interrupts are signals that can be sent to the processor by either hardware
or software. Interrupts can be used to implement interrupt driven I/O as men-
tioned briefly in the previous chapter, but they can also be used in many more
contexts, for example in the use of timers.

The implementation of interrupts on a processor is known as an interrupt
mechanism and before we can write programs that can make use of interrupts
we need to explore how interrupts are implemented.

First of all, how can we see the effects of the interrupt mechanism in our
processor? We can see them by looking inside the PSR. Certain flags in the
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PSR are used to control the activity of interrupts. These flags, shown in figure
13.1, are:

� The Interrupt Enable flag, or E flag;

� The Interrupt Request flag, or I flag;

� The Interrupt vector, a 3-bit value indicated in JASPer by the label ‘vvv’.

Figure 13.1 The PSR flags

I will describe the use of each of these flags in turn.

DEFINITION
Interrupt handler : A
subroutine designed to
deal with an interrupt.

� The interrupt enable flag indicates, not surprisingly, whether or not inter-
rupts are enabled. If the flag is set to 1 then interrupts are enabled, if the
flag is set to 0 then interrupts are disabled and the interrupt mechanism
cannot be used;

� The interrupt request flag indicates when an interrupt has been requested.
An interrupt request is sometimes referred to as an IRQ. If the flag is set
to 1 then an interrupt has been requested, if the flag is set to 0 then an
interrupt has not been requested;

� Finally, the interrupt vector indicates how the interrupt should be dealt
with, or serviced, by the processor. In JASPer, the vector can have a value
between 0 and 7 as it is limited to three bits in size. This means that eight
different types of interrupt can be dealt with by the processor - as when
a device raises an interrupt it will indicate which type of interrupt to use
by placing the vector value on the data bus. The interrupt vector is then
copied to the PSR.
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As well as the flags in the PSR, there is also a set of eight memory locations
known as the vector table. These eight locations can be used to store the
addresses of the individual interrupt servicing routines, or interrupt handlers.
For example, if an interrupt sets the interrupt vector to seven, then it is the
eighth memory location of the vector table where the address of that particular
interrupt handler is stored. If an interrupt is raised, for example with a vector
of three, we can say that we have a level three interrupt.

This is shown in figure 13.2.

00F7

00F3

00F4

00F0

00F2

00F1

00F5

00F6

The address of the interrupt handler
for a level 3 interrupt would be
in location 00F3

Address

Figure 13.2 The interrupt vector table

The default location for the vector table is between the memory locations
$00F0 and $00F7.

13.2 Introducing A Simple Interrupt
Mechanism

So, this is all very interesting, but we need to understand how the processor
deals with interrupts.

Interrupts, sometimes known as exceptions, depend on updating our descrip-
tion of the fetch-execute cycle. When we described the fetch-execute cycle in
chapter 8 we effectively said that it could be described as:
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while(true) {
fetch_cycle;
execute_cycle;

}

This means that we run a fetch cycle, followed by an execute cycle, and then
repeat the process forever. To use interrupts we need to modify our fetch-
execute cycle to this:

while(true) {
fetch_cycle;
execute_cycle;
if ((interrupts_enabled) && (interrupt_requested)) {

save_PSR_on_stack;
save_PC_on_stack;
PC = address_of_interrupt_handling_routine;

}
}

This means run the fetch and execute cycles as before apart from when in-
terrupts have been enabled, and an interrupt has also been requested. When
both of these events are true, the processor is to save the current value of the
PSR on the stack, save the current value of the PC on the stack, and then
compute the address of the interrupt handling routine and then place it in the
PC.

Our simple processor can only deal with one interrupt at a time, so a second
interrupt cannot be raised while the processor is dealing with the first interrupt.

The interrupt mechanism to save the PSR and the PC on the stack, and to set
the PC to the address of the correct interrupt routine can be found in the micro-
instruction file that defines our basic instruction set, instruct.mco, for our
processor - the interrupt cycle is listed prior to the individual microprograms
for individual opcodes. Here it is:

1 PSR(I) = 0
2 MAR←[SP ]
3 MDR←[PSR]
4 M [MAR]←[MDR]
5 ALUx←[SP ]
6 ALUr = [ALUx]− 1
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7 SP←[ALUr]
8 ALUx←[PC]
9 MDR←[ALUx]
10MAR←[SP ]
11M [MAR]←[MDR]
12ALUx←[SP ]
13ALUr = [ALUx]− 1
14SP←[ALUr]
15PSR(E) = 0
16ALUy←[JUMPERS(IntBase)]
17ALUx←[PSR(IntV ec)]
18ALUr = [ALUx] + [ALUy]
19MAR←[ALUr]
20MDR←[M [MAR]]
21PC←[MDR]

Here is an explanation of the key parts to this interrupt mechanism:

� Micro-instruction 1 clears the interrupt request flag, as we are now dealing
with the interrupt request;

� Micro-instructions 2 – 4 save the PSR on the stack;

� Micro-instructions 5 – 7 decrement the SP;

� Micro-instructions 8 – 11 save the PC on the stack;

� Micro-instructions 12 – 14 decrement the SP again;

� Micro-instruction 15 disables the interrupt enable flag, disallowing any
further interrupts until this interrupt has been dealt with;

� Micro-instructions 16 – 18 work out the address of the interrupt handler
in the interrupt vector table by adding the interrupt base address to the
interrupt vector value;

� Micro-instructions 19 – 21 gets the address of the interrupt handler from
the interrupt vector table and loads it into the PC.

So, how can we write a program to make use of this? Interrupts can be raised
by both hardware, known as hard interrupts, and software, known as soft
interrupts.

A soft interrupt can be triggered by an assembly instruction called a TRAP
instruction. Here is the definition of the TRAP instruction:

1 PSR(IntV ec)←[IR(operand)]
2 PSR(I) = 1
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You can see that the TRAP assembly instruction sets the interrupt vector value
in the PSR, and then sets the interrupt request flag.

Hard interrupts can be triggered by hardware devices within our processor
system. We will shortly see an example where interrupts are generated by a
hardware timer.

The last assembly instruction to mention is the RTI instruction - in the same
way as a subroutine must end with an RTS instruction, an interrupt handling
routine must end with an RTI instruction. RTI stands for ReTurn from Interrupt.

The RTI instruction restores the previously saved versions of the PSR and the
PC (saved when the interrupt was first requested). It is listed here:

1 ALUx←[SP ]
2 ALUr = [ALUx] + 1
3 SP←[ALUr]
4 MAR←[SP ]
5 MDR←[M [MAR]]
6 PC←[MDR]
7 ALUx←[SP ]
8 ALUr = [ALUx] + 1
9 SP←[ALUr]
10MAR←[SP ]
11MDR←[M [MAR]]
12PSR←[MDR]

Here is a breakdown of what this instruction does:

� Micro-instructions 1 – 3 increment the SP;

� Micro-instructions 4 – 6 recover the previously stored value to the PC;

� Micro-instructions 7 – 9 increment the SP again;

� Micro-instructions 10 – 12 recover the previously stored value of the PSR.

Compare the breakdown of the RTI instruction with that of the interrupt routine
that we saw before. Within the RTI instruction we don’t have to explicitly re-
enable interrupts, as the previously stored value of the PSR will have the E
flag set to 1.

13.3 An Example Interrupt Program

It’s now time to look at a program that makes use of interrupts.
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It’s a program that prints ‘.’ characters, until the user either hits any key, or until
the processor is halted. However, what makes this programming interesting
for us is that a timer, which for the moment we can think of as a sort of alarm
clock, requests an interrupt every second. When this happens, an interrupt
handler is executed which prints the current time on the screen.

Typical output from this program is shown in figure 13.3.

Figure 13.3 Running the clock2.jas program

It isn’t the prettiest of clocks, but it does show graphically that the proces-
sor is executing the main program continuously, as shown by the sequence
of ‘.’ characters. At one second intervals the interrupt is requested by the
timer, so causing the interrupt handler to display the current time. After the
interrupt routine has finished, the main program continues from where it was
interrupted.

The program is listed here and it is also available as clock2.jas on the CD.
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* This program uses a timer to raise an interrupt every
* one second to display the time.

* Memory mapped I/O
IDR EQU $E0 * Input Data Register
ISR EQU $E1 * Input Status Register
ODR EQU $E2 * Output Data Register
OSR EQU $E3 * Output Status Register

* Time subsystem
_SECS EQU $E8 * Current seconds
_MINS EQU $E9 * Current minutes
_HOURS EQU $EA * Current hours
_DAY EQU $EB * Current day
_MONTH EQU $EC * Current month
_YEAR EQU $ED * Current year
_TIMER EQU $EE * Current timer interval

* load handler address in interrupt vector table
* timer is triggered on interrupt 6
ORG $f6
DC.W #timerhandler

ORG $0
INTE * Enable interrupts
MOVE #$D0,SP * initialize stack pointer ($D0)
MOVE #$01,A *
MOVE A,_TIMER * intialize timer with 1 second

main
MOVE #$2e,B * move a ’.’ into B
JSR putchar * jump to sub-routine putchar
MOVE ISR,A * get the ISR
CMP #$00,A * check if a key has been pressed
BEQ main * if it hasn’t then goto main
HALT * finished

* trap 6
timerhandler

PUSH A
PUSH B
MOVE _HOURS,A * move hours value into A
JSR putdbyte * jump to sub-routine put-dec-byte
MOVE #$3a,B * move a ’:’ into B
JSR putchar * jump to sub-routine putchar
MOVE _MINS,A * move mins value into A
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JSR putdbyte * jump to sub-routine put-dec-byte
MOVE #$3a,B * move a ’:’ into B
JSR putchar * jump to sub-routine putchar
MOVE _SECS,A * move seconds value into A
JSR putdbyte * jump to sub-routine put-dec-byte
POP B
POP A
RTI

*
* putchar routine (char in lo-byte of B)
*
putchar PUSH A * save A on the stack
_putch1 MOVE OSR,A * move OSR to A

CMP #$00,A * Can we print ?
BEQ _putch1 * If not, grab OSR again
MOVE B,ODR * otherwise print lo-byte of B
POP A * retrieve a from the stack
RTS * return from subroutine

*
* put-dec-byte (value in A)
*
putdbyte PUSH A

PUSH B
MOVE #$00,B * set B to 0
MOVE B,_tens * clear the tens variable
MOVE A,_units * set the units variable to A

_decloop CMP #$0a,A * compare A with 10
BMI _print * goto print if less than 10
SUB #$0a,A * otherwise A = A-10
MOVE _tens,B * B = tens }
ADD #$01,B * B++ } i.e tens++
MOVE B,_tens * tens = B }
MOVE A,_units * A = units
JMP _decloop * goto decloop

_print MOVE _tens,A * move tens into A
ADD #$30,A * add 30hex (i.e. its a char value now)
PUSH B *
MOVE A,B *
JSR putchar * print it
POP B *
MOVE _units,A * move units to A
ADD #$30,A * add 30hex (i.e. its a char value now)
PUSH B *
MOVE A,B *
JSR putchar * print it
POP B *
POP B *
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POP A *
RTS *

* data storage
_tens DS.W 1 * storage for tens variable
_units DS.W 1 * storage for units variable

If we break down this program we can see the following:

� The first section consists of a set of EQU statements which are used to set
up some constant values used by the rest of the program. The first four
are constants we have seen previously in chapter 12, and the others are
there to enable us to easily use the system clock. The system clock is a
memory-mapped device that enables us to use the current time within our
programs as well as a timer that we can use to trigger interrupts;

� Next, the interrupt vector table is initialized with the address of the interrupt
handler. When the timer requests an interrupt (more on how it actually
does this in a moment) it requests an interrupt at level six (when the vector
value equals six). This is a hardware interrupt, the timer has been wired
to only use this interrupt level, as is common in processor systems. The
address of the interrupt handling routine is placed in location $00F6, which
is the value of the vector table base address, plus 6;

� The next section of the program contains program initialization, followed
by the main function;

� As part of the initialization, the INTE instruction enables the interrupt
mechanism by setting the E flag in the PSR to 1, and the stack pointer
is initialized. In the last part of the initialization, the timer is set to trig-
ger an interrupt every 1 second, by placing the value $01 into the TIMER
memory location. This timer can trigger interrupts between 1 second and
255 seconds apart. A 0 value would cause the timer to never trigger an
interrupt;

� The main program is the next section. It prints a ‘.’ character, checks to
see if a key has been pressed, and if it hasn’t loops back to print another
‘.’ character. If a key has been pressed, the program terminates. To print
the ‘.’ character it calls a subroutine called putchar, which is defined later;

� After the main program, the interrupt handler, called timerhandler is de-
fined. This saves the current values from the A and B registers on to the
stack, and then displays the current time (using the subroutines putdbyte
and putchar). Afterwards the interrupt handler restores the previously
saved values of the A and B registers so that the program can resume
successfully once the interrupt routine is completed. After the RTI instruc-
tion is executed the program will continue where it was before the interrupt
occurred;
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� Finally, we have the definitions of the putchar and the putdbyte sub-
routines. We have already seen putchar in a previous example - it uses
polled I/O as described in the previous chapter. The subroutine putdbyte
converts a hexadecimal value, that must be less than $64 (decimal 100),
stored in the A register into two decimal digits that are then displayed on
the monitor. For example, if register A contains $001C when putdbyte is
called, then ‘28’ is displayed on the monitor.

So, to recap:

� The program prints ‘.’ characters;

� Every second an interrupt is requested which interrupts the program
wherever it is;

� The interrupt handling routine displays the time;

� Once the interrupt has been serviced, the program continues from where
it was interrupted.

13.4 Comparing Subroutines With Interrupt
Handling

In our example, we demonstrated the interrupt mechanism by using hard inter-
rupts, in other words the interrupts were triggered by an external device (the
timer in the clock system).

However, as mentioned before, not all interrupts are hard interrupts. Soft inter-
rupts can also be triggered, and unlike hardware interrupts which are triggered
at any point in the program execution, software interrupts are triggered at the
same location in the program every time.

For example TRAP #$02 will trigger an interrupt with a vector of two. Software
TRAP instructions are often used in real processor systems to make system
calls. A system call is a subroutine that is provided, most probably in ROM, by
the makers of the processor system.

It is very important to note that the use of interrupt handlers is very different to
the use of subroutines. Let us compare the two different methods:

� The interrupt mechanism saves both the PC and the PSR on the stack;

� The subroutine mechanism saves only the PC;

� A call to a subroutine occurs at the same address during program
execution each time;

� When a hard interrupt is triggered, program execution could be at any
address within the program.
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13.5 The Features Of A More Complex
Interrupt Mechanism

It’s worth mentioning some of the features offered by a more complex interrupt
mechanism.

13.5.1 Layered Interrupts

Firstly, many processors offer layered interrupts. This means that some inter-
rupts can be classed as being more important than other interrupts that are
requested at the same time.

For example, if an aircraft’s flight control system has two interrupts requested
at the same time, the first at level one indicates that someone is smoking in
the toilet, while the second interrupt at level four indicates that you are about
to fly into a mountain, then the interrupt with the higher level will be dealt with
first. Once the more important interrupt has been dealt with, the second less
important interrupt can then be dealt with.

13.5.2 Non-Maskable Interrupts

Next, many processors offer non-maskable interrupts. This means that some
interrupts cannot be ‘switched off’ in software, and must always be dealt with.

Neither of these features are offered within JASPer, and won’t be mentioned
again in this book as they are not required for a fundamental understanding of
interrupts.

CHAPTER SUMMARY

The concept of the interrupt

� An interrupt is a signal sent to the processor by either hardware or
software;

� The processor uses its interrupt mechanism to either call an interrupt
handling routine or to ignore the interrupt;

� In our simple processor we use the I and E PSR flags and the interrupt
vector in the PSR to indicate the status of the interrupt mechanism;
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� The interrupt vector can be from 0 through to 7;

� A segment of memory is used to store the addresses of the different
interrupt serving routines;

� The interrupt mechanism is based on an extended fetch-execute cycle.

Comparing the use of subroutines with interrupts

� An interrupt saves the PC and the PSR on the stack, while a subroutine
call saves only the PC;

� A subroutine call happens at the same point in a program, while a hard
interrupt can occur at any point within the program flow of execution.

The features of more complex interrupt
mechanisms

� More complex interrupt mechanisms implement layered interrupts, where
different interrupts can have a different importance;

� More complex interrupt mechanisms can implement non-maskable inter-
rupts, which are interrupts that cannot be disabled.

SELF TEST QUESTIONS

1 Modify a copy of the clock2.jas program to include a INTD instruc-
tion instead of the INTE. An INTD instruction will disable interrupts. Run
the program and see what is different to the previous execution of the
program.

2 Modify your program to display the time every five seconds instead of ev-
ery one second. Hint, you need to change the value in the TIMER memory
location.

3 Modify the subroutines.jas program to use a TRAP instruction to trigger
an interrupt that calls the subroutine instead of the JSR call. Hint, you
need to set up a handler for the interrupt.

EXERCISES

1 Write a program that uses an interrupt mechanism to count the number
of complete seconds between two key presses by the user.

2 Write a program that allows a user to enter a 10 character word. If they
enter the word before 5 seconds has elapsed, the program prints out the
word. If they do not enter the word in time, then the program prints ‘Too
late!’ instead.
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3 Write a program that generates a random time value between 5 and 20
seconds. The user can hit the space bar at any point in time, but if the
user hits the space bar within 3 seconds before the timer is triggered, then
the message ‘You win!’ is displayed. If the interrupt is triggered before a
key has been pressed then the message ‘You lose!’ is displayed.
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Systems Software

CHAPTER OVERVIEW

In this chapter we discuss the tools available to the programmer to
aid program development.

This chapter includes:

� An overview of systems software, including operating systems
and systems development software;

� The concepts of translators, including the assembler and the
compiler;

� Comparing the assembler with the compiler;

� Using the assembler and compiler with our processor;

� Other systems tools, including the use of software libraries.

14.1 Introducing Systems Software

As we have found in the course of using our processor, the task of writing,
running and debugging our programs is not straightforward. Very early on in
the history of electronic computers it was discovered that there was a need for
software to make the whole process much easier. This software is known as
systems software. Systems software is the software that you can use so that
you don’t have to deal with the ‘raw’ machine.

Systems software tends to fall into two broad categories, these are the op-
erating system software and systems development software. We will look at
both of these in turn, but our main emphasis will be on systems development
software.
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14.2 The Operating System

The most common form of system software today is the operating system.
The operating system can be as simple as a single monitor program, or as
complex as a suite of programs, such as Microsoft Windows XP or the Linux
operating system.

DEFINITION
A monitor : A program
that is used on a small
device to help developers
to load and run their
programs. Many novice computer users never realize that the operating system is a set

of programs that are written by programmers just like any other program.

The aim of an operating system is to provide a useful working environment
to a user, who does not have to understand how the underlying machine
works, but just wants to complete a particular task. This task might be writing a
document, or emailing friends on the Internet, or calculating the monthly bud-
get. Whatever the task, the operating system will provide a common working
environment for the user.

At its core the operating system provides a number of services to the user.
The most common of these include:

� Process management - running multiple programs at the same time;

� Memory management - managing the limited memory resource for all
running programs;

� File system management - providing a standard interface to all the files
available to the operating system;

� Interfacing with hardware devices - so that all programs can use the
attached devices through a standard interface.

NOTES
A detailed overview of
modern operating systems
can be found in [Wil01]. A
good first text on operating
systems is [O’G00], while
a more detailed study can
be found in [Tan01].

Although the operating system is the most often used piece of software that
most users actually see, it is beyond the scope of this text to discuss operating
systems in any greater detail than this.

14.3 Systems Development Software

Now we move on to the second key category of systems software, that of
systems development software.

The point of systems development software is to ease the program develop-
ment process.

The most important programs that aid this task are a form of program called
a translator . We will look at two types of translator programs - the assembler
and the compiler .

A translator program takes an input file written in one programming language
and converts, or translates, it into another. This could be from an assembly
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language into machine code, as in an assembler, or it could be from a high-
level language into machine code or assembly language, as with a compiler.

Firstly, we will take a look at the operation of the assembler, which takes
assembly language and converts it into machine code.

14.3.1 The Assembler

If you have been attempting all of the chapter exercises, creating programs
for our processor, then you will have found out a key truth in creating machine
code programs. It is difficult! Firstly you have to work out the function of the
program itself, and then you have to convert the program into assembly code,
and then convert that into machine code - this includes working out opcodes
and operands as well as addresses of labels that loops will make use of.

Assembly Program

Machine Code

Assembler

0003
9700
61F0
F000

ADD  #$03,A
MOVE A,B
OR   #$F0,B
HALT

Figure 14.1 The assembly process

For this reason, early programmers soon created a program that would take
over most of this laborious task for them. They still had to write the assembly
language programs, but the task of turning assembly programs into machine
code was automated. An assembler program is possible because our program
and data are held in the same memory. The data output of one program (the
assembler program) can in turn be a program in its own right.

Assembler programs translate assembly language into machine code. Both
the assembly language source program and the machine code are machine
dependent. This means that the source program and the machine code are
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related directly to a particular type of machine architecture. For example, as-
sembly programs written for the Intel X86 architecture will not work on the
Motorola 68000 architecture, and vice versa.

Our processor too has an assembler program, and now you have completed all
your programming exercises so far I wish to make a confession. All but one (the
‘Hello World’ example from chapter 1) of the machine code example programs
that you have seen in this book were created by the assembler program rather
than by hand. I don’t feel too guilty about this, because I had to write the
assembler program!

So what does an assembler program do for us? Essentially it automates the
process that you have had to do by hand so far:

� It converts instructions into machine code;

� It works out the memory locations of address labels;

� It decodes directives;

� It ignores comments;

� It reports any syntax errors found.

It means that when we use the assembler, if our program has been success-
fully assembled then we only have to concentrate on looking for semantic
errors in our program, rather than syntax errors.

Apart from when processing some directives, an assembler program writes
one machine code instruction for every assembly code instruction.

The use of an assembler program also gives us greater flexibility with
our programs because it makes it much easier to use libraries of useful
subroutines.

14.3.2 Using An Assembler

The assembler program for JASP is imaginatively named the JASP Cross
Assembler. It is written in a language called Perl, and therefore to use the
assembler on your own computer system you need an installation of Perl run-
ning on your machine. It is outside the scope of this book to tell you how to do
this, instead take a look at [SOC97].

Assuming that you have an installation of Perl, and that you have copied the
directory jasp from the CD, it is possible to assemble assembly language files.

Place the file polled-io.txt (from the examples directory tree on the CD,
and shown below) in the same directory as the assembler program and run
the following from a command prompt:
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jasm -a polled-io.txt

* A demonstration of polled I/O
*
* This program reads 10 characters from the keyboard
* and then prints them all out once they’ve been entered
*
OSR EQU $E3 * Output Status Register (OSR)
ODR EQU $E2 * Output Data Register (ODR)
ISR EQU $E1 * Input Status Register (ISR)
IDR EQU $E0 * Input Data Register (IDR)

ORG 0
MOVE #$00,B * count is storage for our
MOVE B,count * counter value

loop MOVE ISR,A * Get ISR
CMP #$00,A * is a char available?
BEQ loop * no - wait some more
MOVE IDR,A * read the char

MOVE count,B * the address to write the
ADD #data,B * value to is count+data
MOVE A,(B) * write the char in there

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10 and
BEQ gotchars * move to next section if we have
MOVE B,count * otherwise write count back
JMP loop * and get another char

gotchars MOVE #$00,B * count is storage for our
MOVE B,count * counter value

write MOVE OSR,A * get OSR
CMP #$00,A * OSR 1 can print, OSR 0 can’t print
BEQ write * not yet, wait some more

MOVE count,B * the address to read the
ADD #data,B * value from is count+data
MOVE (B),A * get the char in there
MOVE A,ODR * print the char

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
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BEQ done * and move to end if we have
MOVE B,count * otherwise write count back
JMP write * and write another char

done HALT * done

count DS.W $01 * the counter
data DS.W $0A * storage for our 10 characters

You should now see the machine code file, with the original assembly program
included as comments, scroll up your command window. If you want to capture
the output of the assembler program into a file so it can be executed in JASPer,
you can type the following:

jasm -a polled-io.txt -o polled-io.jas

It is the resulting file polled-io.jas, shown below, that can then be loaded
into JASPer and executed.

The JASPer assembler understands a typical set of directives. Directives can
be thought of as shorthand for processing the assembly language program
in particular ways, this could be saying where the program is to be loaded
into memory (the ORG directive) or including complete library files (the USE
directive).

For more information on the JASP Assembler, see appendix A.

# 0000 # * A demonstration of polled I/O
# 0000 # *
# 0000 # * This program reads 10 characters from the keyboard
# 0000 # * and then prints them all out once they’ve been entered
# 0000 # *
# 0000 # OSR EQU $E3 * Output Status Register (OSR)
# 0000 # ODR EQU $E2 * Output Data Register (ODR)
# 0000 # ISR EQU $E1 * Input Status Register (ISR)
# 0000 # IDR EQU $E0 * Input Data Register (IDR)
# 0000 #

ORG $0000 # 0000 # ORG 0
9100 # 0000 # MOVE #$00,B * count is storage for our
A31F # 0001 # MOVE B,count * counter value

# 0002 #
92E1 # 0002 # loop MOVE ISR,A * Get ISR
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8000 # 0003 # CMP #$00,A * is a char available?
C302 # 0004 # BEQ loop * no - wait some more
92E0 # 0005 # MOVE IDR,A * read the char

# 0006 #
931F # 0006 # MOVE count,B * the address to write the
0120 # 0007 # ADD #data,B * value to is count+data
A800 # 0008 # MOVE A,(B) * write the char in there

# 0009 #
931F # 0009 # MOVE count,B * add 1 to count
0101 # 000A # ADD #$01,B *
810A # 000B # CMP #$0A,B * and see if we have reached 10 and
C30F # 000C # BEQ gotchars * move to next section if we have
A31F # 000D # MOVE B,count * otherwise write count back
E002 # 000E # JMP loop * and get another char
9100 # 000F # gotchars MOVE #$00,B * count is storage for our
A31F # 0010 # MOVE B,count * counter value

# 0011 #
92E3 # 0011 # write MOVE OSR,A * get OSR
8000 # 0012 # CMP #$00,A * OSR 1 can print, OSR 0 can’t print
C311 # 0013 # BEQ write * not yet, wait some more

# 0014 #
931F # 0014 # MOVE count,B * the address to read the
0120 # 0015 # ADD #data,B * value from is count+data
9800 # 0016 # MOVE (B),A * get the char in there
A2E2 # 0017 # MOVE A,ODR * print the char

# 0018 #
931F # 0018 # MOVE count,B * add 1 to count
0101 # 0019 # ADD #$01,B *
810A # 001A # CMP #$0A,B * and see if we have reached 10
C31E # 001B # BEQ done * and move to end if we have
A31F # 001C # MOVE B,count * otherwise write count back
E011 # 001D # JMP write * and write another char
F000 # 001E # done HALT * done

# 001F #
0000 # 001F # count DS.W $01 * the counter
0000 # 0020 # data DS.W $0A * storage for our 10 characters
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
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14.3.3 The Compiler

A compiler program is similar in many ways to an assembler. It takes input in
one language and translates it into another. However, a compiler translates a
high-level language into either assembly language or machine code.

High-Level Program

Compiler

0003
9700
61F0
F000

{

}

if (X==0)

  Y = X + Z;

Machine Code

CMP  A,#$00
BNE  label1
ADD  A,B
MOVE $7E,B

Assembly Code

Figure 14.2 The compilation process

The key aspect of a high-level language is that it is generally machine indepen-
dent, which means that different compilers can convert the same source code
into either machine code or assembly language for different architectures.

14.3.4 Using A Compiler
NOTES

C-- is pronounced ‘See
minus minus’.

There is also a compiler written for JASP. It is called the JASP C-- Cross
Compiler. This is a compiler for a language called C-- that produces output in
JASP assembly language.

A cross compiler is a compiler that creates programs to be run on a different
machine architecture.

NOTES
C++ is pronounced ‘See
plus plus’.

C-- is a purely educational language and is a very small sub-set of a popular
high-level language called C++. C--, written by David Harrison, can be used
to demonstrate the workings of a typical compiler.

A small program to demonstrate the use of the compiler can be seen here.
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// add four numbers together

int a = 40; // first value
int b = 45; // second value
int c = 10; // third value
int d = 5; // fourth value

{
a = a + b + c + d; // add them
cout << a; // and print the result result

}

// End of program

This is very similar to the pseudo-language we’ve used since chapter 9.

This program adds four numbers together, and outputs the result to the screen.
To run this program on our processor, we first have to compile the C−− pro-
gram into assembly language (by using the cross compiler) and then convert
the resulting assembly language program into machine code (by using the
cross assembler program we briefly described earlier). Once we’ve done all
that we can load the machine code into JASPer and run the program.

So, to begin the process we need to run the cross compiler:

jcc < add.c-- > add.asm

This produces the assembly file add.asm, shown shortly.

We can then assemble this program using the cross assembler as follows:

jasm -a add.asm -o add.jas

It is the file add.jas which can then be executed on our processor. Even run-
ning the machine code isn’t as simple as we’ve seen before, because the pro-
gram has to be executed using the advanced instruction set, advanced.mco,
which can be loaded from the JASPer ‘file/open’ dialog (the advanced instruc-
tion set can address all of memory with no addressing limitations - it is not
intended for novice users). When the program is executed you will see the
value 100 printed on the screen and then the program will halt.
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If you take a look at the assembly program add.asm produced by the compiler
(shown below), you will see that the assembly code that it produces looks
exactly the same as that you would write yourself, except that there are no
comments in the program. Don’t worry if at first glance the assembly language
looks complicated - it is! The compiler actually writes assembly programs that
use the stack often, more so than a human would write.

MCO "advanced.mco"
ORG $0100
LPC $0100
MOVE #$DF,SP
JMP main

_Eintegeroverflow DC.B ’Integer overflow!\n’,0

_Edividebyzero DC.B ’Divide by zero!\n’,0

sym_d DS.W 1
sym_c DS.W 1
sym_b DS.W 1
sym_a DS.W 1

main
MOVE #^5,B
MOVE B,sym_d
MOVE #^10,B
MOVE B,sym_c
MOVE #^45,B
MOVE B,sym_b
MOVE #^40,B
MOVE B,sym_a
MOVE sym_a,A
PUSH A
MOVE sym_b,A
PUSH A
MOVE sym_c,A
PUSH A
MOVE sym_d,A
PUSH A
POP B
POP A
ADD B,A
BVS L0
PUSH A
POP B
POP A
ADD B,A
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BVS L0
PUSH A
POP B
POP A
ADD B,A
BVS L0
PUSH A
POP A
MOVE A,sym_a
MOVE sym_a,A
JSR putdword
HALT

L0
MOVE #_Eintegeroverflow,A
JSR putstring
HALT

Ldividebyzero
MOVE #_Edividebyzero,A
JSR putstring
HALT

USE "advancedio.lib"

Also, you may see that the assembly language that it produces is not optimized
- this means that the code isn’t as efficient as it could be. Optimizing compilers
attempt to create the most efficient assembly programs, but we don’t need to
concern ourselves with advanced features of this sort.

NOTES
The issues of optimization
are described in [BO03].

We won’t make use of the compiler again in this text.

For more information on the JASP C−− Cross Compiler, see appendix A.

14.3.5 Comparing The Assembler With The
Compiler

Now we have looked at both assemblers and compilers it is important to stress
their similarities and their differences:

� Both the compiler and the assembler are examples of translators;
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� Generally one assembly language statement will produce one line of ma-
chine code, whereas one line from a high-level language will compile into
multiple assembly language statements;

� Assembly language focuses on the use of a particular hardware architec-
ture. For example, an assembly program for JASPer will not be correctly
assembled for any other processor. A high-level language program can
(providing a compiler for the task exists) be compiled for any given hard-
ware architecture. For example, the same C−− program can be compiled
to any hardware architecture to which the compiler has been ported
(written to work on a given architecture).

� A high-level language program is said to be portable, if it can be compiled
for many different architectures. However, the effect of this is that high-
level languages do not offer the full facilities of a given architecture, such
as particular hardware features (for example, direct access to the PSR
flags), to a programmer. Some functions of a program, for example to
access a disk drive, are still written in assembly language to allow a high-
level program to access specific hardware. The use of assembly language
in a high-level program is called in-line assembler, and is not offered by all
compilers.

� Most programs these days are written in high-level languages rather than
assembly language due to this need for portability.

14.3.6 Other Systems Software Tools

Compilers and assemblers are not the only tools available to the program
developer. Other tools exist to aid the program development process.

One such tool is the software library, wherein useful programming subroutines
are written once, and used each time that they are required. This means that
the developer doesn’t have to be constantly re-inventing the wheel.

For example, a library might contain subroutines that print a character on the
screen, get a character from the keyboard, etc. Such libraries exist for our
processor, and can be used by the assembler we discussed earlier by using
the USE directive within your program. An example of this is shown below,
which is a version of the interrupt program we looked at in the previous chapter
updated to use libraries. The subroutines putchar and putdbyte no longer
need to be written as part of the program, as there are versions available in
the library used.

Please note that when you include a library in your program, the entire
contents are included and not just the functions you wish to make use of.

* This program uses a timer to raise an interrupt every
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* one second to display the time.

MCO "advanced.mco"

* load handler address in interrupt vector table
* timer is triggered on interrupt 6
ORG $f6
DC.W #timerhandler

ORG $100
LPC $100

INTE * Enable interrupts
MOVE #$D0,SP * initialize stack pointer ($D0)
MOVE #$01,A *
MOVE A,_TIMER * intialize timer with 1 second

main
MOVE #$2e,B * move a ’.’ into B
JSR putchar * jump to sub-routine putchar
MOVE ISR,A * get the ISR
CMP #$00,A * check if a key has been pressed
BEQ main * if it hasn’t then goto main
HALT * finished

* trap 6
timerhandler

PUSH A
PUSH B
MOVE _HOURS,A * move hours value into A
JSR putdbyte * jump to sub-routine put-dec-byte
MOVE #$3a,B * move a ’:’ into B
JSR putchar * jump to sub-routine putchar
MOVE _MINS,A * move mins value into A
JSR putdbyte * jump to sub-routine put-dec-byte
MOVE #$3a,B * move a ’:’ into B
JSR putchar * jump to sub-routine putchar
MOVE _SECS,A * move seconds value into A
JSR putdbyte * jump to sub-routine put-dec-byte
POP B
POP A
RTI

USE "advancedio.lib"
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CHAPTER SUMMARY

Systems software

� System software is used so that users do not have to work with the ‘bare’
processor;

� The two broad categories of system software are operating systems and
systems development software.

Translators

� The most common form of systems development software is the translator;

� A translator takes a program in one form of the programming hierarchy and
outputs another. A compiler inputs a high-level language program and out-
puts either an assembly language program or a machine code program. An
assembler inputs an assembly language program and outputs a machine
code program;

� A high-level program is said to be portable, because it is not written for any
one specific architecture. An assembly language program is not portable
because it is written for one specific architecture;

� An assembly language statement generally produces one machine code,
while a high-level statement will generally produce many machine codes.

Other systems tools

� The software library is a useful tool, as it means that subroutines for
particular tasks can be re-used.

SELF TEST QUESTIONS

1 Run the polled-io.jas program, then modify the polled-io.txt
source by altering the ORG statement to begin the program load at
memory location $0010. Re-assemble the program, examine the new
polled-io.jas program, and then execute it from its new start location.

2 Use the compiler and the assembler to produce the machine code for the
program add.c−−.

3 In the program add.c−− modify the variable b to the value 55, then
re-compile, re-assemble, and re-run the program.
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4 Write a program to display ‘The time is now xx:xx’, where xx:xx is the
current hours and minutes in hexadecimal. Hint, there is a subroutine in
the basicio.lib library called putbyte that you can make use of.

5 Write a program to read in the user’s name, and then prints out ‘Hello
name!’, where name is the name entered. Hint, limit the number of char-
acters that can be entered to 10 characters, not including the carriage
return.

EXERCISES

1 Re-write the polled-io.txt program making use of the putchar and
getchar subroutines from within the basicio.lib library. Use the as-
sembler to produce the new polled-io.jas - debug any syntax and
semantic errors. Run the debugged program in JASPer.

2 Write a program to input your name in lowercase and display it in
uppercase.

3 Write a program to read in a number of characters, terminated by a
carriage return (the ASCII code 0D) and then print out the number of
characters typed.

4 Use the compiler and the assembler to produce the machine code for the
program fact.c−−, and then run the program.
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15

Bringing It All
Together - The
Programmer’s
Perspective

CHAPTER OVERVIEW

In the final chapter of this section we take a problem specification
and design and write an assembly language program that requires
many of the features described in previous chapters.

This chapter includes:

� The introduction of a problem specification;

� The development of a solution, using stepwise refinement;

� Testing the solution;

� Documenting the solution.

15.1 Problem Specification

The problem we will attempt to solve is the creation of a stopwatch program to
run on our processor system. This stopwatch will count seconds, up to a limit
of 59 minutes and 59 seconds, at which point the stopwatch will count from 0
seconds once more.
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The stopwatch will have two functions that can be controlled by the user to
control the stopwatch, as well as a third function to quit the program. These
functions can be attached to key presses, and so the program will understand
the following keys:

� A ‘1’ key press will cause the stopwatch to start counting seconds. If
the stopwatch is already running, then hitting the ‘1’ key will cause the
stopwatch to pause;

� A ‘2’ key press will cause the stopwatch to reset itself, so whatever the
current stopwatch time it is reset to 0. If the stopwatch is running at the
point the ‘2’ key is pressed then the stopwatch will also be paused;

� A ‘3’ key press will halt the program.

The time is updated by the use of an interrupt handler being triggered by the
hardware timer, but more on that in a later refinement.

The first task we need to perform is to sketch out in a high-level language the
functionality of our program.

Here is the high-level description of our program:

print_opening_message;
while (keypress != 3) {

keypress = getchar();
if (keypress == ’1’) {

// run the stopwatch
runStopwatch();

}
else if (keypress == ’2’) {

// reset the stopwatch
resetStopwatch();

}
else if (keypress == ’3’) {

// quit the program
}
else {

// ignore keypress
}

}
print_closing_message;

Basically, we can see from the high-level description that the program consists
of a processing loop based on a while construct. Each time around the loop
the program checks to see which function, based on a key press of ‘1’, ‘2’ or
‘3’, has been selected and runs an appropriate piece of code for that function.
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� If a ‘1’ key has been pressed, then the subroutine runStopwatch is called;

� If a ‘2’ key has been pressed, then the subroutine resetStopwatch is
called;

� And if a ‘3’ key has been pressed, the flow of control leaves the while
construct so that the program can complete.

Initially, it appears that the time displayed by the stopwatch can never be up-
dated, but we must remember that independently of the main program, there
is also an interrupt handler being executed every time the clock timer requests
an interrupt. The interrupt routine, in a high-level language, appears like this:

seconds++;
if (seconds == 60) {

seconds = 0;
minutes++;

}
if (minutes == 60) {

minutes = 0;
}

So, you can see that the interrupt handler actually increments the time to be
displayed by the stopwatch.

We will start by writing an equivalent assembly language program to match
the high-level definition of the main program.

15.2 Program Refinement One

Our first draft program will create the ‘bones’ of our program without us having
to yet worry about the detail of the functionality, and so this is the first stage of
our step-wise refinement.

An assembly language program should typically take a structure similar to
that shown in figure 15.1. If you follow such a structure it actually makes the
program easier to read and understand, as well as helps us focus on the
issues we need to solve.
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Constant Definitions

Main Program

Subroutines

Library Definitions

Global Variables

String Constants

Figure 15.1 The structure of a typical assembly language program

Using this structure, we can already map out our first draft program and test
its simple functionality. We have to make a number of decisions before we can
begin:

� Constants: we will make use of polled I/O, and therefore we must include
the definitions of the I/O registers;

� Main program: the main program will be required to initialize the stack as
we expect to use a number of subroutine calls;

� Subroutines: we can use empty subroutines for the running and resetting
of the stopwatch for the moment. We have encountered subroutines to
print character strings in chapter 14;

� Library definitions: to simplify this program, and ensure that our program
will fit into the memory space between $0000 and $00DF, we will not make
use of any libraries. Examine the memory map in figure 12.1 to understand
this limitation;

� Global variables: we will need storage for the stopwatch time, and it makes
sense to store minutes and seconds in separate locations;

� String constants: we can define our character strings to be printed as the
program starts, and as it completes.

15.2.1 Constants

Here is a first draft of our constants section:

* Memory mapped I/O
IDR EQU $E0 * Input Data Register
ISR EQU $E1 * Input Status Register
ODR EQU $E2 * Output Data Register
OSR EQU $E3 * Output Status Register
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15.2.2 Main Program

Here is a first draft of our main program:

ORG $0
MOVE #$D0,SP * initialise stack pointer

MOVE #$00,A *
MOVE A,minutes * minutes = 0
MOVE A,seconds * seconds = 0

MOVE #message,A * print opening message
JSR putstring *

_main_loop *
JSR displayTime * print the stopwatch time
JSR getchar * get a keypress from the user
CMP #$31,A * if it is a ’1’ we
BEQ _main_runStopwatch * want to run the stopwatch
CMP #$32,A * if it is a ’2’ we
BEQ _main_resetStopwatch * want to reset the stopwatch
CMP #$33,A * if it is a ’3’ we
BEQ _main_done * want to stop the program
JMP _main_loop * any other keypress is ignored

_main_runStopwatch *
JSR runStopwatch * run the stopwatch
JMP _main_loop * then go through the loop again

_main_resetStopwatch *
JSR resetStopwatch * reset the stopwatch
JMP _main_loop * then go through the loop again

_main_done *
MOVE #message2,A * print closing message
JSR putstring *
HALT * finished

Our program performs some initialization by setting the SP and setting the
stopwatch minutes and seconds to zero. Then it prints the opening message
to the screen prior to entering the while construct. Inside the while construct
the program accepts key presses from the user, using ‘1’, ‘2’ or ‘3’ key presses
to perform program functionality (checking for ASCII codes $31, $32 and $33
respectively). The while construct is exited when the key press ‘3’ has been
entered. Finally, the program prints a final message to the screen prior to
halting.
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15.2.3 Subroutines

Here is a first draft of our subroutines section:

displayTime *
RTS * return from subroutine

runStopwatch *
RTS * return from subroutine

resetStopwatch *
RTS * return from subroutine

putchar PUSH A * save A on the stack
_pc_check

MOVE OSR,A * move OSR to A
CMP #$00,A * Can we print ?
BEQ _pc_check * If not, grab OSR again
MOVE B,ODR * otherwise print lo-byte of B
POP A * retrieve A from the stack
RTS * return from subroutine

getchar
MOVE ISR,A * move ISA to A
CMP #$00,A * if it is 0 we have no char
BEQ #getchar * so branch to check again
MOVE IDR,A * when we have a char put it in A
RTS * return from subroutine

putstring *
MOVE (A),B * move the word pointed to by A into B
SWAP B * swap bytes in B
PUSH A *
MOVE #$ff,A * place a mask of $00ff into A
AND A,B * and use the mask on B (to look at
POP A * the lo-byte only)
CMP #$00,B * if the lo-byte is a 0, we are
BEQ #_ps_done * finished
JSR putchar * otherwise print the character
MOVE (A),B * and get the next byte into
PUSH A * the lo-byte of B
MOVE #$ff,A *
AND A,B * apply the same mask as before
POP A *
CMP #$00,B * if the lo-byte of B is a 0, we are
BEQ #_ps_done * finished
JSR putchar * otherwise print the character
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ADD #$01,A * point to the next word
JMP #putstring * and run the subroutine again

_ps_done
RTS * return from subroutine

The subroutine displayTime, runStopwatch and resetStopwatch are
empty subroutines, in that they can be called, but merely return without doing
anything. Putting in these subroutines means that we can attempt to assem-
ble the complete program and test it prior to adding to the complexity of the
program.

The subroutines putchar, getchar and putstring have been seen before.
Don’t be afraid to use subroutines that you have written previously, provided
that they are well documented and ‘self-contained’. By ‘self-contained’ I mean
that they must not change the contents of the A or B register (unless this is re-
quired for parameter passing to the subroutine), and any data storage required
by the subroutine is kept within the subroutine. Of course, if we had decided
to use the basicio.lib library, then we would not have need to include these
subroutines directly in the program. If we included the contents of the library
however, our program would be too large to fit in memory between $0000 and
$00DF.

15.2.4 Global Variables

Here is a first draft of our global variables section:

minutes DS.W 1 * stopwatch minutes
seconds DS.W 1 * stopwatch seconds

As you can see, we are setting aside a word of memory for each of our
variables.

15.2.5 String Constants

Here is a first draft of our string constants section:

message DC.B ’Stopwatch Facility [1]Start/stop [2]Reset [3]Quit\n\n’,0
message2 DC.B ’\nProgram completed.\n’,0
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The DC.B directive allows us to specify strings that we can use within our
program. These strings are called null-terminated strings, as each character
in turn is printed until a $00 (that we have placed as the last character of
each string) is encountered. Also, \n means print a line feed - the assembler
converts this into a $0A code. These strings are displayed at the start and at
the end of the program respectively.

15.2.6 Assembling The First Refinement

These sections have been placed in a file called sw1.txt, it is available on
the CD. Assuming that you have the assembler set up on your system (see
appendix A for a description of how to do this), and you have the sw1.txt
copied to your current directory, at a command-line prompt you can type:

jasm -a sw1.txt -o sw1.jas

The program assembles with no errors and can be run by loading into JASPer
and executed. It doesn’t currently do much, it displays the character strings
and accepts the key presses from the user, but only pressing key ‘3’ will
actually do anything - it will complete the program.

Figure 15.2 shows the output of the program after being executed in JASPer.

15.3 Program Refinement Two

In the second refinement of our program we will build the stopwatch function-
ality into our existing program.

We need to define the functionality of the runStopwatch, resetStopwatch,
and displayTime subroutines.

15.3.1 Subroutine displayTime

Starting with the easiest first, we will write the subroutine displayTime. This
subroutine has to display the current stopwatch time, as stored in the minutes
and seconds global variables, and print it in the format MM:SS. To ensure that
we continually overwrite the ‘old’ printed value we will also first print a carriage
return character.

254



www.manaraa.com

Bringing It All Together - The Programmer’s Perspective

Figure 15.2 The output after running the first refinement in JASPer

Here is a first draft of our displayTime subroutine:

displayTime *
PUSH A * store A on the stack
PUSH B * store B on the stack
MOVE #$0D,B *
JSR putchar * print a CR
MOVE minutes,A *
JSR putdbyte * print minutes
MOVE #$3A,B *
JSR putchar * print a :
MOVE seconds,A *
JSR putdbyte * print seconds
POP B * restore B from the stack
POP A * restore A from the stack
RTS * return from subroutine
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This subroutine firstly prints a carriage return character, then it uses a sub-
routine called putdbyte to print the number of minutes in a decimal format, it
prints a ‘:’ character, and then finally prints the number of seconds in a decimal
format.

We encountered the putdbyte subroutine in an earlier clock example pro-
gram. Here it is:

putdbyte
PUSH A * store A on the stack
PUSH B * store B on the stack
MOVE #$00,B * set B to 0
MOVE B,_pdb_tens * clear the tens variable
MOVE A,_pdb_units * set the units variable to A

_pdb_decloop
CMP #$0a,A * compare A with 10
BMI _pdb_print * goto print if less than 10
SUB #$0a,A * otherwise A = A-10
MOVE _pdb_tens,B * B = tens }
ADD #$01,B * B++ } i.e tens++
MOVE B,_pdb_tens * tens = B }
MOVE A,_pdb_units * A = units
JMP _pdb_decloop * goto decloop

_pdb_print
MOVE _pdb_tens,A * move tens into A
ADD #$30,A * add 30hex (i.e. its a char number now)
PUSH B * store B on the stack
MOVE A,B *
JSR putchar * print it
POP B *
MOVE _pdb_units,A * move units to A
ADD #$30,A * add 30hex (i.e. its a char number now)
PUSH B *
MOVE A,B *
JSR putchar * print it
POP B * restore B from the stack
POP B * restore B from the stack
POP A * restore A from the stack
RTS * return from subroutine

* data storage
_pdb_tens DS.W 1 * storage for tens variable
_pdb_units DS.W 1 * storage for units variable

The putdbyte subroutine prints the lower byte of the contents of the A regis-
ter as two decimal digits, so we can use it to print both the minutes and the
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seconds of the stopwatch time. Note that the subroutine uses two words of
storage internally to compute the correct output.

15.3.2 Subroutine runStopwatch

Next we will write the subroutine runStopwatch. This subroutine keeps check
whether the stopwatch is running or paused, and for every time it is called, it
switches the state between running and paused. To do this it needs to store
which state it is currently in, so we make use of an extra global variable called
state. This variable is set to 0, representing a paused state, in the main
program as an addition to the program initialization code. These changes a
shown below:

* main program
.
.

* further initialization
MOVE #$00,A *
MOVE A,state * state = 0, stopwatch not running

.

.
* global variables

.

.
state DS.W 1 * stopwatch state, 0=stopped, 1=running

.

.

Our runStopwatch subroutine can be defined as:

if (state == 0) {
state = 1;
// enable timer

}
else {

state = 0;
// disable timer

}

This can be drafted as:
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runStopwatch *
PUSH A * store A on the stack
MOVE state,A *
CMP #$00,A * if (state == 0)
BEQ _rsw_stopped * then ...
JMP _rsw_started *

_rsw_stopped *
MOVE #$01,A *
MOVE A,state * state = 1
JMP _rsw_done *

_rsw_started * else ...
MOVE #$00,A *
MOVE A,state * state = 0

_rsw_done *
POP A * restore A from the stack
RTS * return from subroutine

Currently, this subroutine doesn’t control how the interrupt is requested, but
that will come in the next refinement.

15.3.3 Subroutine resetStopwatch

This subroutine is to reset the stopwatch time. It will also pause the stopwatch
if it is currently running.

Here is the first draft of this subroutine:

resetStopwatch *
PUSH A * store A on the stack
MOVE #$00,A *
MOVE A,state * state = 0 (paused)
MOVE A,minutes * minutes = 0
MOVE A,seconds * seconds = 0
POP A * restore A from the stack
RTS * return from subroutine
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15.3.4 Assembling The Second Refinement

We can assemble and execute this latest refinement to our program. It is
stored on the CD in a file called sw2.txt. When we run it we see the out-
put as shown in figure 15.3. The stopwatch still does very little, apart from
take the key presses as before, and display the stopwatch time as 00:00.

Figure 15.3 The output after running the second refinement in JASPer

15.4 Program Refinement Three

Our program, for all our hard work so far, still can’t actually provide a stopwatch
facility, as the stored time is not yet updated. In this third and final refinement
of our program we will build the interrupt handler to count the seconds and
look at what we have to do to ensure the timer requests the interrupts.
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The interrupt mechanism, as described in chapter 13, can request a timed
interrupt by the use of the timer register, which is at memory location $00EE.
The timer can be used to request interrupts anything from 1 to 255 seconds
apart, so we can cause an interrupt to be requested every one second by
placing the value $01 into the register.

Provided that interrupts are enabled and the address of the interrupt handler
is in the interrupt vector table at location $00F6, to handle the level 6 interrupts
generated by the timer, we can make our processor call our interrupt handler
every second, thus becoming the heart of our stopwatch.

15.4.1 The Interrupt Handler

So, assuming that our interrupt handler is going to be called every second by
the interrupt mechanism, what do we actually want it to do?

As we said at the start of the chapter, here is the high-level definition of its
functionality:

seconds++;
if (seconds == 60) {

seconds = 0;
minutes++;

}
if (minutes == 60) {

minutes = 0;
}

The handler needs to add one to the current value of seconds, and if this
means that the number of seconds is now 60, to set seconds to 0 and add 1 to
the current value of minutes. If the number of minutes is now 60 it also needs
to set the number of minutes back to 0. In this way the stopwatch display can
count up to 59:59 before going back to 00:00.

Here is the first draft of our interrupt handler:

intHandler
PUSH A * store A on the stack
MOVE seconds,A * }
ADD #$01,A * } seconds++
MOVE A,seconds * }
CMP #^60,A * if (seconds == 60)
BEQ _ih_update_secs * then ...
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JMP _ih_mins *
_ih_update_secs *

MOVE #$00,A *
MOVE A,seconds * seconds = 0
MOVE minutes,A * }
ADD #$01,A * } minutes++
MOVE A,minutes * }

_ih_mins *
CMP #^60,A * if (minutes == 60)
BEQ _ih_update_mins * then ...
JMP _ih_done *

_ih_update_mins *
MOVE #$00,A *
MOVE A,minutes * minutes = 0

_ih_done *
JSR displayTime * display the stopwatch time
POP A * restore A from the stack
RTI * return from interrupt

As you can see, the interrupt handler also displays the current stopwatch
time once the time has been updated. Also, note that the interrupt handler
is terminated with an RTI (Return from Interrupt) instruction and not an RTS
instruction. Remember, these two instructions do slightly different things, and
if we were to mistakenly have used an RTS instruction, our program would fail
to work correctly.

15.4.2 Setting Up The Interrupt Mechanism

We are not quite finished yet, as we still need to make the appropriate updates
to the rest of our program to allow interrupts to be triggered, to load the ad-
dress of the interrupt handler into the interrupt vector table, and to update a
number of subroutines to make use of the TIMER memory location.

To allow interrupts, we update the beginning of our main program as follows:

ORG $0
INTE * Enable interrupts
.
.

We add the TIMER constant:
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TIMER EQU $EE * TIMER register used to set the timer
* interval to trigger the interrupts

We also add a section prior to our main program to install the address of our
interrupt handler into the interrupt vector table for an interrupt level 6:

ORG $F6 * Load the handler address in
DC.W #intHandler * interrupt vector table.

Finally we need to update the main program, the runStopwatch subroutine
and the resetStopwatch subroutine to include setting the TIMER register. The
updates to the main program are:

* main program
.
.
* more initialization
MOVE #$00,A *
MOVE A,TIMER * TIMER = 0, interrupts not triggered
MOVE A,state * state = 0, stopwatch not running
.
.

_main_done *
MOVE #$00,A *
MOVE A,TIMER * TIMER = 0
.
.

The runStopwatch subroutine becomes:

runStopwatch *
PUSH A * store A on the stack
MOVE state,A *
CMP #$00,A * if (state == 0)
BEQ _rsw_stopped * then ...
JMP _rsw_started *

_rsw_stopped *
MOVE #$01,A *
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MOVE A,state * state = 1
MOVE A,TIMER * TIMER = 1
JMP _rsw_done *

_rsw_started * else ...
MOVE #$00,A *
MOVE A,state * state = 0
MOVE A,TIMER * TIMER = 0

_rsw_done *
POP A * restore A from the stack
RTS * return from subroutine

While the resetStopwatch subroutine becomes:

resetStopwatch *
PUSH A * store A on the stack
MOVE #$00,A *
MOVE A,state * state = 0
MOVE A,TIMER * TIMER = 0
MOVE A,minutes * minutes = 0
MOVE A,seconds * seconds = 0
POP A * restore A from the stack
RTS * return from subroutine

15.4.3 Assembling The Final Refinement

We can assemble and execute this final refinement to our program. It is stored
on the CD in a file called sw3.txt. When we run it we see the output as shown
in figure 15.4 - you can see that the stopwatch has been run for 38 seconds.

15.5 Final Testing Of The Program

As we have seen, testing new functionality as we put it in is vital to ensure that
our program runs as expected. However, once the program is in its final stage
we need to formalize the tests that ensure our complete program meets the
original specification.

NOTES
It is worth noting that black
box testing has nothing to
do with the black-box
mode in JASPer - don’t
confuse the two. To do this we can use a method known as black box testing. It is outside the

scope of this text to cover the issues of testing in detail, but the broad concepts
of black box testing are described below.
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Figure 15.4 The output after running the final refinement in JASPer

15.5.1 Black Box Testing

Black box testing means that we test our program against our initial speci-
fication without reference to the program code in the solution. We treat our
program as a black box, where it can do particular functions and yet we are
not interested in how it actually performs these functions.

Using black box testing, we can check the functionality of our program against
the initial specification. We can do this in a tabular form as seen in table 15.1.
We document eight test cases that describe what we expect our program to
do under particular actions.

NOTES
Another form of testing
known as white box testing
tests the program by using
knowledge about how the
program is written.
Thorough testing would
make use of both white
box and black box testing.

It is worth mentioning that this set of test cases could be expanded to also test
that the stopwatch correctly works between the times of 00:00 to 59:59, but
as I said before, a more thorough discussion of testing is outside the scope of
this text.
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Test Case Action State Expected Result Actual Result
1 Key ‘1’ pressed Stopwatch paused Stopwatch to start
2 Key ‘1’ pressed Stopwatch running Stopwatch to pause
3 Key ‘2’ pressed Stopwatch paused Stopwatch to reset

time to 00:00
4 Key ‘2’ pressed Stopwatch running Stopwatch to reset

time to 00:00 and
stop running

5 Key ‘3’ pressed Stopwatch paused Program quits
6 Key ‘3’ pressed Stopwatch running Program quits
7 Any other key

pressed
Stopwatch paused Key press ignored

8 Any other key
pressed

Stopwatch running Key press ignored

Table 15.1 Using black box testing - example test cases

15.6 Documenting The Program

We have a working program that meets our specification, so are we finished?
No we are not! Throughout the writing of the program we commented on the
low level workings of individual subroutines, but it is time to complete the doc-
umentation. With assembly language programs it is wise to add comments
to:

� Document what the program is expected to do, and any restrictions on the
program;

� Document at a higher level the functionality of individual subroutines, in-
cluding descriptions of pre-conditions and post-conditions. Pre-conditions
are those conditions that have to be true prior to the subroutine being
used, while post-conditions are those conditions that have to be true once
the subroutine has completed;

� Document any other information that you think another programmer (or
yourself at some later date) will need to understand the program to a level
by which they could update or maintain it.

The completed program is on the CD in a file called stopwtch.txt. It has had
documentation added to describe the usage of the program as a whole and
individual subroutines.

Here is an example of the level of documentation added to explain an
individual subroutine:
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* Name: runStopwatch
*
* Description : Starts or pauses the stopwatch
* subroutine. The state of the
* stopwatch is stored in the ’state’
* variable. If the state is
* currently 0 (paused), then the
* state is set to 1 (running) and
* the TIMER is set to 1 to trigger
* an interrupt every one second.
* If the state is already 1 then
* the state is set to 0 (paused),
* and the TIMER is set to 0 to stop
* interrupts being raised.
*
* Preconditions : state is expected to be 1 or 0.
* Postconditions: The state is updated and the TIMER
* updated.
* Stack use : 1 word
* Calls : None
* Called by : main program
*
* Algorithm to check state:
*
* if (state == 0) {
* state = 1;
* TIMER = 1;
* }
* else {
* state = 0;
* TIMER = 0;
* }

All this, as well as the individual comments for particular assembly language
statements, are to explain only 14 assembly language statements! This level of
documentation is vital for assembly language programs; it is worth getting into
the habit of writing this level of documentation early on in your programming
career as it will pay dividends to you when you have to update programs long
after you originally wrote them, or when you have to pass your programs on to
someone else to support.
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15.6.1 Stack Usage

This level of detail also helps us better understand our program in ways not
immediately obvious. For example, now we have fully documented individual
subroutines we can see categorically how much stack usage is required by
our program.

No subroutines are recursive (where a subroutine can make a call to itself)
- if they were we would have documented that fact, and so we can work out
exactly what our stack usage requirements are.

Before we documented our program we might not have considered checking
the issues of stack usage, but remember, the stack is an ADT that is com-
pletely under our control and if we provide too small a stack our program could
fail. To check usage we can draw a tree of subroutine calls, as shown in figure
15.5 to work out maximum stack usage.

From figure 15.5 we can see that the maximum stack usage is only nine
words, which consists of the interrupt handler calling displayTime, which
calls putdbyte, which calls putchar. However, we must also remember that
the interrupt handler can be called at any point in the program. The greatest
use of the stack therefore would be 11 words if the timer triggered while the
runStopwatch subroutine was executing.

Main Program (1) intHandler (2)

runStopwatch (1)

resetStopwatch (1)

getchar (0) putstring (3) displayTime (3)

putchar (1)

putdbyte (3)

Figure 15.5 A tree to work out maximum stack usage

As the last part of our program is the string constants we can check where
the end of our program is in memory. It occurs at memory location $00B7.
We know that our stack begins at memory location $00DF, so we can see that
we have more than enough stack space to ensure that the program will never
suffer from a stack overflow - where parts of the program are overwritten by
the usage of the stack.
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CHAPTER SUMMARY

Using stepwise refinement

� Use stepwise refinement to test partial programs as the program is being
written;

� Comment your program wisely, don’t just duplicate the assembly language
literally;

� Stick to the program structure of constants, main program, subroutines,
library definitions, global variables and string constants. Doing so will aid
the readability of your program.

Testing and documenting the solution

� To ensure the removal of semantic errors, perform both white box and black
box testing on your solution;

� Fully document each subroutine of your program, listing a full description
of what it does, pre-conditions, post-conditions, stack usage, etc. This level
of documentation will make the program easier to update when you come
back to it months or even years later.

EXERCISES

1 Modify the stopwatch program so that it could be used to count up to 24
hours, rather than the current one hour limit.

2 Modify the stopwatch program so that it could be used to count up to a
full 7 days. How can you test such a program? Hint, without having to sit
at your computer for 7 days!

3 Write a program to count down from a value that can be set by the user.
The user should be able to set the timer to a particular start time, pause
the timer, and reset the timer in a similar fashion to the stopwatch program
described in this chapter.

268



www.manaraa.com

Part III

Under The Bonnet

We return to the viewpoint of the hardware engineer, in
order to examine the control of our processor.
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Building An
Instruction Set

CHAPTER OVERVIEW

In this first chapter that looks ’under the bonnet’ we discuss how to
build instructions from micro-instructions.

This chapter includes:

� Micro-instructions revisited - data movement operations, ALU
operations, test operations and processor control operations;

� How to construct instructions from micro-instructions;

� Building new instruction sets.

16.1 The Instruction Set

We have now used our instruction set in anger, and it is time to revisit how
instructions actually work, looking at the types of micro-instructions, and then
seeing how to create new instructions.

16.2 Micro-Instructions Revisited

We have seen before, in chapter 8 and earlier, how micro-instructions are used
to build assembly language instructions.

To remind ourselves, each micro-instruction belongs to one of the following
groups:
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� Data transfer micro-instructions;

� ALU micro-instructions;

� Test micro-instructions;

� Processor control micro-instructions.

Each micro-instruction is actually defined at the hardware level of our pro-
cessor, and when a micro-instruction is executed it performs certain actions
at that level, and we will look into this in chapter 17. To describe the action
of a micro-instruction, we have described it in RTL, such as with the data
movement

A←[MDR]

We will look at each group in turn, to make sure we are acquainted with what
they do in our processor.

16.2.1 Data Transfer Micro-Instructions

Data transfer microcodes copy a bit pattern from one location to another.

For example, A←[MDR] describes the micro-instruction that copies a bit
pattern from the MDR into the A register.

16.2.2 ALU Micro-Instructions

ALU micro-instructions control the functionality of the ALU, they are used to
make the ALU perform a logical or arithmetic operation.

For example, the operation to add the contents of the ALUx and the ALUy
registers is described as ALUr = [ALUx] + [ALUy].

16.2.3 Test Micro-Instructions

Test micro-instructions are used to allow assembly language programs to have
conditional branches. For example, the assembly language instruction BEQ
address would not be possible without the test micro-instruction to check the
condition of the Z flag. Let’s take a deeper look at that, here is the definition of
the BEQ address instruction:

� if(PSR(z) == 1)
� PC←[IR(operand)]

To perform the branch this is what happens:
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� If the Z flag is set to 1, then the condition of the test micro-instruction is
true and the following micro-instructions in the assembly instruction are
executed, in this case the data movement micro-instruction to place a new
value in the PC, performing the branch operation;

� If the Z flag is set to 0, then the condition of the test micro-instruction
is false, and the following micro-instructions that make up the assembly
instruction are ignored, so for this example the PC is never updated, and
so no branch is executed.

So, without test micro-instructions it would be impossible for our assembly
language programs to ever use any conditional branching, and so severely
limit the usefulness of our processor.

16.2.4 Processor Control Micro-Instructions

Processor control micro-instructions do exactly that, they control the pro-
cessor. There are not many processor control instructions. One example is
the PSR(E) = 1 micro-instruction, which enables the interrupt mechanism
by setting the E flag in the PSR. This micro-instruction is used in the INTE
assembly instruction that we used in the example program in chapter 13.

16.3 Creating An Instruction

Now we have re-examined the different types of micro-instructions available
to us, we can attempt to create our own instructions. Once we have created a
new instruction we can write an assembly language program to make use of
it.

16.3.1 Our First New Instruction

Our first example is relatively simple. We will write an instruction to transfer the
value from the A register to the B register, and then increment the A register.
The instruction can be written as:

� MOVE (A)+,B

To do this we first need to be able to describe our new instruction in terms
of pre-conditions and post-conditions. Here are our pre-conditions and post-
conditions:

� Pre-condition: The address of the value to be transferred has been placed
in the A register;
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� Post-condition: B will contain the transferred value, and the A register will
be incremented.

We will give our new instruction the unused opcode of $F5 - we know that
this opcode is unused because it is not listed in the basic instruction set quick
reference in appendix B. Let us make an attempt at writing this instruction:

Opcode f5
Mnemonic "MOVE (A)+,B"
Description "MOVE (A) to B, post-increment A"
MAR<-[A] * }
MDR<-[M[MAR]] * } B = (A)
B<-[MDR] * }
ALUx<-[A] * }
ALUr=[ALUx]+1 * } A = A+1
A<-[ALUr] * }

This instruction is stored in \examples\chapter16\move_ab.mco.

This solution successfully loads into our processor when we use the ‘file/open’
dialog (don’t forget to select the microcode filetype), and if we were to list all
available micro-instructions now using the menu option ‘processor/view op-
codes’, we can see our new instruction listed at opcode $F5. The next stage is
to write a program to test our new instruction. This test program can be seen
below, it is called move ab.txt.

Here is the command to assemble the test program:

jasm -a move_ab.txt -m instruct.mco:move_ab.mco -o move_ab.jas

The option -m to the assembler tells it to use the instruction set provided by the
following one or more micro-instruction files. If more than one micro-instruction
file is to be used, then they are separated from each other by a colon, as seen
with -m instruct.mco:move_ab.mco above.

* A program to use our new instruction MOVE (A)+,B

ORG 0
MOVE #value,A * initialize A with addr of value
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MOVE #$00,B * initialize B with 0
MOVE (A)+,B * test our new instruction
HALT * program complete

value DC.W $1234

When we assemble this program using our assembler program we have the
finished machine code program as shown here. To test this program we
can use the JASPer ‘trace’ option to step through each line of our program
individually.

# 0000 # * A program to use our new instruction MOVE (A)+,B
# 0000 #

ORG $0000 # 0000 # ORG 0
9004 # 0000 # MOVE #value,A * initialize A with addr of value
9100 # 0001 # MOVE #$00,B * initialize B with 0
F500 # 0002 # MOVE (A)+,B * test our new instruction
F000 # 0003 # HALT * program complete
1234 # 0004 # value DC.W $1234

When we trace through the program we can see that initially the A register is
set to $0004 (the address of the value to transfer) and the B register set to
$0000, and after running our new instruction then we have A set to $0005 and
B set to $1234, as we would have expected. Our new instruction has worked
successfully.

16.3.2 Our Second New Instruction

For our second, more complex example, let us assume that we want to build
the instruction to move a data value into a memory location, so that initializing
variables in our programs doesn’t take two instructions as we have seen so
far. For example, we currently have to use instructions such as:

� MOVE #$00,A

� MOVE A,counter

Wouldn’t it be better if we could create an instruction that could be used like:
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� MOVE #$00,counter

To do this we again first need to be able to describe our new instruction in
terms of pre-conditions and post-conditions.

� Pre-condition: The value to move into the variable counter located in
memory consists of one byte (#$00), and is contained in the first operand
to the instruction;

� Pre-condition: The address of the counter variable has a length of one
word, and is contained in the second operand;

� Post-condition: The 8-bit value is transferred, sign extended, to the 16-bit
counter variable, located in memory.

We can formally describe this instruction as:

� MOVE #databyte,addrword

This means that we wish to transfer the data byte from the initial operand into
the word contained in the address which is the second operand. This particular
form is used because it is clear to us the sizes and usage of the individual
operands, and the assembler program can also understand this format. Note
that this instruction will use two 16-bit machine codes, the first to contain the
opcode and the first operand, the second to contain the second operand. Note
that this allows us to use 16-bit addressing.

First of all, we need to write the micro-instruction to define our instruction. This
instruction needs to:

� Read the next word in memory to obtain the address to store the data byte
to;

� Perform the data movement;

� Ensure that the address of the next instruction to be executed is stored in
the PC.

One possible solution, found on the CD at

\examples\chapter16\move.mco

is shown in here:

* An example instruction
*
Opcode f5
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Mnemonic "MOVE #databyte,addrword"
Description "MOVE a data value into a memory location"
MAR<-[PC] * move the address of the storage location into the MAR
INC<-[PC] * } update PC to point to next address
PC<-[INC] * } ready to fetch the next instruction
MDR<-[M[MAR]] * } read the address of the location
MAR<-[MDR] * } to move the data value into
ALUx<-[IR(operand)] * } move the IR(operand) into the MDR via the
MDR<-[ALUx] * } ALUx (causes the value to be sign extended)
M[MAR]<-[MDR] * Write the data value to the address

Note that for testing I’ve used the same opcode that we used in the previous
example.

Again, we need to use a test program, stored in

\examples\chapter16\move.txt

to check that our new instruction performs as expected. The test program is
shown in below.

* A program to use our new instruction
* MOVE #databyte,addrword

ORG $0

MOVE #$05,store * move #$05 to store
HALT * done

store DS.W 1

Once assembled, with the command

jasm -a move.txt -m instruct.mco:move.mco -o move.jas

we have the program listed below to run within our processor.

277



www.manaraa.com

Fundamentals of Computer Architecture

# 0000 # * A program to use our new instruction
# 0000 # * MOVE #databyte,addrword
# 0000 #

ORG $0000 # 0000 # ORG $0
# 0000 #

F505 # 0000 # MOVE #$05,store * move #$05 to store
0003 # #
F000 # 0002 # HALT * done
0000 # 0003 # store DS.W 1

To check that our new instruction works, load both the test program and the
new instruction into JASPer and trace through the program. You will find that
after completing the new MOVE instruction the PC is pointing at the next in-
struction (the HALT) and on examining the contents of memory you will find
that the memory location $0003 (containing the store variable) now contains
$0005 as expected.

16.4 Building New Instruction Sets

The JASPer basic instruction set gives a typical set of instructions available to
programmers within the Instruction Set Architecture, or ISA, of a typical 16-bit
processor.

As it uses 16-bit instructions the basic instruction set is limited to an operand of
only eight bits, this means that some instructions, like MOVE A,$12 are limited
to only addressing the first 256 locations in memory or to moving 8-bit values
to a register like in MOVE #$7F,A.

So far we have looked at how to build individual ISA level instructions using
micro-instructions, but it is worth remembering that the complete instruction
set contains not only instructions but also the definitions of the fetch and
interrupt cycles too.

It is possible to avoid the limitation in the basic instruction set by implementing
a full 32-bit instruction set, where operands can be 16 bits in size. It is actually
quite simple to do this, by making slight modifications to individual instructions,
but mainly by re-implementing the fetch cycle.

The major change is by removing the use of the IR(operand), as this is only
8 bits wide and the limiting factor in operand size. Instead, we can redefine
the fetch cycle such that the first word is always the opcode (with a further 8
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bits - the old IR(operand) as padding) and the second word is a mandatory
16-bit operand. To replace the IR(operand), we can decide to always store the
operand in the MDR once it is fetched, in other words we can use the MDR as
a 16-bit operand field.

We can then redefine the fetch cycle to be:

1 MAR←[PC]
2 INC←[PC]
3 PC←[INC]
4 MDR←[M [MAR]]
5 IR←[MDR]
6 MAR←[PC]
7 INC←[PC]
8 PC←[INC]
9 MDR←[M [MAR]]
10CU←[IR(opcode)]

In this new fetch cycle, micro-instructions 1 to 5 fetch the instruction and place
it in the IR, micro-instructions 6 to 9 fetch the operand and place it in the MDR
and micro-instruction 10 transfers the opcode to the CU.

What are the effects of using such a fetch cycle in an advanced instruction
set?

� All operations are at least 32 bits long;

� The whole address space can be addressed in a single operand;

� 16-bit data transfers can be easily undertaken;

� The fetch cycle takes longer to complete;

� Instructions that require no operand still have to have the operand word
fetched, so wasting clock cycles;

� Programs written using this advanced instruction set use double the
amount of memory used by programs written using the basic instruction
set.

To see how instructions themselves have to be updated, here is the execution
cycle for the MOVE #$dataword,A instruction, which moves a 16-bit immediate
value into the A register:

� A←[MDR]

We can see that the immediate value is transferred from the MDR, where it
has been placed by the extended fetch cycle. In the basic instruction set the
operand was placed in the 8-bit IR(operand) field.
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To assemble our previous example program to use the advanced instruction
set we can use the following command:

jasm -a move.txt -m advanced.mco:move.mco -o move2.jas

The output from this command can be seen below. Note the differences be-
tween this program and that produced for our second new instruction that used
the basic JASPer instruction set. Basically, we can see that all instructions are
now 32-bit, as the HALT instruction also has a 16-bit operand that contains
$0000.

# 0000 # * A program to use our new instruction
# 0000 # * MOVE #databyte,addrword
# 0000 #

ORG $0000 # 0000 # ORG $0
# 0000 #

F505 # 0000 # MOVE #$05,store * move #$05 to store
0004 # #
F000 # 0002 # HALT * done
0000 # #
0000 # 0004 # store DS.W 1

Finally, it is worth noting that the cross compiler discussed in chapter 14 writes
assembly instructions using this advanced instruction set.

CHAPTER SUMMARY

Building assembly instructions

� Be clear as to what you want your new instruction to do, and understand
the micro-instructions available to you;

� Always test your new instruction within a short assembly language pro-
gram, and step through it to ensure that your new instruction works
successfully, and has no side-effects;

� Understand the limitations placed on you by the architecture, and ensure
that your new instructions either bypasses these limitations or document
the fact that they don’t.
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SELF TEST QUESTIONS

1 Write an instruction to perform the operation MOVE -A,B, which pre-
decrements the A register prior to transferring the contents of the A
register to the B register.

2 Write a test program to test your MOVE -A,B instruction.

3 Write an instruction that can move any 16-bit value into the A register, as
in MOVW #$FFFF,A. Hint, your instruction will consist of two 16-bit words.

4 Write a test program to test your MOVW #dataword,A instruction.

EXERCISES

1 Write an instruction to perform the operation MOVE A+,B, which post-
increments the A register after transferring the contents of the A register
to the B register.

2 Write a test program to test your MOVE A+,B instruction.

3 Write an instruction to perform an operation like ADDW #$1234,A, which
adds a 16-bit value to the A register.

4 Write a test program to test your instruction from exercise three.
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The Control Unit

CHAPTER OVERVIEW

In this chapter we get to grips with the engine of the processor - the
control unit. The use of the control unit is explained, together with
how it uses sets of micro-instructions to implement each opcode
and run the fetch-execute cycle.

This chapter includes:

� The concepts of a microcoded processor;

� A look inside the CU;

� How the CU decodes and executes instructions.

17.1 Introducing The Control Unit

We have looked at the construction of instruction sets using groups of micro-
instructions to describe individual instructions. Now it is time to look inside
the control unit of our processor to understand how machine instructions are
actually run by the hardware.

It is now worth mentioning that our processor is an example of a well-known
architecture known as a CISC architecture, where CISC stands for Complex
Instruction Set Computer. It has a microcoded processor at its heart that runs
individual micro-instructions to perform the execution of instructions and hence
our programs.

Later on in chapter 19 we will compare this with another form of processor
design known as the RISC architecture, where RISC stands for Reduced
Instruction Set Computer.
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Meanwhile, let us take another look at our simple processor, but this time con-
centrating on the hardware level again, showing the control signals between
the control unit and the other various components that make up our processor
system. This view of our processor is shown in figure 17.1.

ALUy

Data Bus
PC

INC

SP

IR

CU

MAR

MDR

A

B

ALUx

ALUr

PSR

Control Bus

Interrupt
Request

Memory

Address Bus

Figure 17.1 The hardware level of our processor

This view of our processor has been simplified by the removal of many control
signals. As we saw in chapter 4 individual registers are controlled by the use
of Output Enable and Clock control lines, whereas in figure 17.1 for simplicity
only single control lines between the control unit and each component has
been shown. However, even with this simple diagram, we can see that the
other components within our system are controlled completely by the control
unit, as all control lines emanate from the CU.

In fact, as we will see shortly, it is the CU that performs the extended fetch-
execute cycle that we saw in chapter 13. To remind ourselves, here is the
complete fetch-execute cycle for the basic instruction set, shown in the form
of a high-level language algorithm:
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while(true) {
fetch_cycle;
execute_cycle;
if ((interrupts_enabled) && (interrupt_requested)) {

save_PSR_on_stack;
save_PC_on_stack;
PC = address_of_interrupt_handling_routine;

}
}

Let us imagine that we want to perform an operation such as MOVE A,B which
copies the value held in the A register into the B register.

Firstly, the control unit has to perform a fetch cycle, which as we saw in chapter
8, within our processor is defined as follows:

1 MAR←[PC]
2 INC←[PC]
3 PC←[INC]
4 MDR←[M [MAR]]
5 IR←[MDR]
6 CU←[IR(opcode)]

If we were to look at the definition of the MOVE A,B instruction we would find
that it is:

1 MDR←[A]
2 B←[MDR]

So, to complete this instruction, the CU needs to execute the six steps of the
fetch cycle and the two steps of the execute cycle. How does it do this? Let us
take the first of these micro-instructions and look at it in more detail.

The micro-instruction MAR←[PC] is a data movement, and we learned back
in chapter 4 that it can be performed by setting the PC Output Enable to 1,
setting the clock input of the MAR to 1 (known as clocking the MAR), and
then back to 0, and then finally setting the PC Output Enable back to 0. This
sequence of micro-operations can be written as:

PCen = 1;MARc;PCen = 0

where PCen = 1 means set the output enable of the PC to 1, and MARc

means clock the MAR. We can list these actions for all steps as shown in figure
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17.2. This grid defines all of the operations required to perform the instruction
MOVE A,B. Each line of signals is sent out on the control lines at each step
to perform the actions required for that step, whether it is clocking particular
registers or performing a memory access. Once a step is completed, the next
step is executed.
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Figure 17.2 The instruction defined at the hardware level

It is worth noting that steps one and two could be executed concurrently, as
they both consist of a register taking the value from the data bus placed there
by the PC.

17.2 Inside The Control Unit

Now we have a direct link between the execution of our program and the
enabling and clocking of individual registers at the hardware level.

However, we still need to define how the CU itself works, and we will move on
to that now by introducing the internal structure of the CU, as shown in figure
17.3.

As you can see, inside the CU we have a device that looks very much like
our processor, but in miniature. In fact this device works in a similar fashion
to the overall processor, the difference being that this level is aimed entirely
at running individual instructions. Each instruction has been allocated a mi-
croprogram, which is the sequence of micro-instructions that execute that
instruction.

The control unit has a micromemory for storing all the micro-instructions that
make up individual instructions (as we saw for just one instruction in figure
17.2), it has a microMAR and a microMDR to access this memory, and it has
a microPC to step through the micro-instructions that make up a particular
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instruction. The microCU is the engine of the CU. This is a complex circuit
that is built from gate logic as we saw back in chapter 3. There is not another
tiny control unit inside the microCU - we are now at the lowest level of our
processor. We won’t take a look inside the microCU (it will be implemented as
gate logic), instead we will focus on what it does.

Address Mapper

MicroPC

MicroINC MicroMDR

MicroMAR

MicroCU

MicroMemory

IR

Control Signals

Interrupt

Request

PSR Flags

Clock

Opcode

Figure 17.3 Inside the control unit

We will now work through what the CU does to process an instruction.

� Firstly, the opcode is passed into the CU from the IR;

� The address mapper is used to find the start address of the microprogram
for this opcode in the micromemory, and the address is accessed from the
micromemory by the use of the microMAR;

� The first micro-instruction is now in the microMDR and it is now important
to note the difference between what we’ve seen of the MDR and the func-
tionality of this microMDR. The microMDR is a very wide register - this
consists of a number of bits that the microCU uses to control the proces-
sor, whereas the rest, which could be up to 200 bits on real processors,
are the control signals that we saw emanating from the control unit back
in figure 17.1.
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� The microcontrol unit uses values from the microMDR and the PSR flag
values to choose where to get the next micro-instruction to run, which
could be from the next micromemory location, or to run a different cycle,
or to run a new microprogram for a different opcode;

� Once the microprogram for a given instruction has been executed then
the CU runs the next fetch cycle, which itself consists of just another
microprogram stored in the micromemory.

This is a very powerful structure. It means that we can load different instruction
sets into our processor to model different instruction set architectures. This
idea was first proposed in the 1950s by Maurice Wilkes (a description can be
found in [RH00]), and has been in use since the 1960s. It can be found still
in processors today. Instruction sets that can be loaded into a processor have
been labelled firmware, to emphasize their position between hardware and
software.

We started many chapters ago by introducing simple electronic circuitry, and
seeing how complex useful circuits could be built. From there we saw how
we could write programs based on our newly built processor. Finally, we have
now moved back down to the hardware level to see how our processor, at the
electronic level, actually executes our programs.

CHAPTER SUMMARY

The concept of a microcoded processor

� A microcoded processor has its instruction set in firmware;

� The firmware can be updated, even to the extent that the complete
instruction set is changed.

The work of the CU

� The CU fetches and executes all instructions - it is the engine of the
processor;

� The individual micro-instructions that perform a single instruction are
fetched in turn from a micromemory and control signals to perform that
micro-instruction are placed on the control bus;

� The fetch and interrupt sequences of micro-instructions are stored in the
micromemory just like that of every other instruction;
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SELF TEST QUESTIONS

1 For the instruction POP A, write down the complete list of micro-
instructions that are executed, and then specify the instruction at the
hardware level in a table like figure 17.2.

2 For the instruction AND addr,A, write down the complete list of micro-
instructions that are executed, and then specify the instruction at the
hardware level in a table like figure 17.2.

EXERCISES

1 For the instruction PUSH A, write down the complete list of micro-
instructions that are executed, and then specify the instruction at the
hardware level.

2 For the instruction NOT (B), write down the complete list of micro-
instructions that are executed, and then specify the instruction at the
hardware level.

3 For the interrupt mechanism, write down the complete list of micro-
instructions that are executed, and then specify the cycle at the hardware
level.
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Extending The
Hardware

CHAPTER OVERVIEW

In the final chapter within this section we discuss the possible
extensions to our basic design that we could make.

This chapter includes:

� Adding more general purpose registers.

� Implementing further ALU functions;

� The implementation of a supervisor mode, and its implications
for creating an operating system;

� Implications on the instruction set.

18.1 Introduction

I will discuss more wide-ranging architectural issues in chapter 19. In the
meanwhile it is interesting to look at some of the simple ‘tweaks’ we could
make to our processor design and see what effects they could have on our
processor.

18.2 Adding More General Purpose
Registers

One thing that you will have already found while writing programs for our
simple processor, is that the limitation of only two general purpose registers
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causes you to have to think more ingeniously! If a subroutine makes use of
three or more variables, then it is currently impossible to store them in the
general purpose registers available to you, instead you have to either store
the variables in named memory locations all the time, or make heavy use of
the stack (which is still in memory). This means our program executes more
slowly, as memory accesses could be an order of magnitude (or more) slower
than the use of register transfers.

18.2.1 The Origins Of Limiting General Purpose
Registers

Early processors were limited in the number of general purpose registers they
had available to them purely because they had to be built from vacuum tubes
that failed very often. More general purpose registers meant more vacuum
tubes, which meant the computer system needed more maintenance work
and hence was less available for processing.

NOTES
Early processors tended to
have just one general
purpose register, called
the accumulator, as it was
used to accumulate the
result of calculations.

This limitation is no longer with us as we now build our general purpose reg-
isters from much more reliable components. The trend today is to have many
general purpose registers in a processor and we will look at this in chapter 19.

18.2.2 The Implications Of Adding Extra General
Purpose Registers To JASPer

Getting back to our simple processor, yes, we could quite simply add more
registers to our processor design, however this would have a number of
implications.

Firstly, let us imagine that we have added two more general purpose registers.
We will call them register C and register D. To build these in to our design we
would have to:

� Add two copies of our register circuit to our processor design;

� Update the CU such that the two new registers are controlled - effec-
tively we would have had to expand the contents of the micromemory,
as described in chapter 17;

� This would have the effect of adding in many more data movement opera-
tions to our processor to cope with data movements to and from the new
registers.

If the memory usage in our micromemory was already high, then by adding
these extra general purpose registers we may also need to increase the size
of our micromemory.
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The largest impact on adding extra general purpose registers is actually on
the design of the instruction set. For example, if we wanted to have the same
functionality for our new general purpose registers as our existing general pur-
pose registers then we would have to add at least 87 instructions per general
purpose register to our instruction set, to have instructions available to us like:

� ADD #data,C

� MOVE C,addr

� JSR C

However, the number of instructions we can have in a JASP instruction set is
limited by the width of the opcode field, and so we can only have a maximum
of 256 instructions in an instruction set. The standard instruction set already
has over 170 instructions, and so there is just enough room to add instructions
for one extra general purpose register, but certainly not enough for two.

A possible compromise might be to reduce the number of addressing modes
used in the standard instruction set to reduce the number of instructions
required to use each additional general purpose register.

A further compromise might be to use the newer general purpose registers
with only a limited number of instructions, but that limitation means that a
programmer would have to remember to use individual general purpose reg-
isters with different instructions - and so negating any usefulness of this sort
of limited general purpose register.

NOTES
An instruction format that
uses bits in the opcode
field to specify registers is
described for the
hypothetical
microprocessor NeMiSyS
in [SACR91].

In reality, rather than limit instructions in this way, modern processors actually
have larger opcode fields with a number of bits within the field to represent
which general purpose registers to use with the instruction, therefore a single
instruction can be used with any general purpose registers available on the
processor.

18.3 Increasing ALU Functionality

Like adding general purpose registers, increasing ALU functionality seems like
something we can do quite easily, and yet there are a number of fundamental
issues to consider.

Actually, over the years that JASPer has been in use, the ALU has increased
in functionality. Originally it didn’t perform any multiplication, division or re-
mainder operations, but these functions were added relatively recently to the
ALU. These operations increase dramatically the amount of logic circuitry re-
quired, but this increase in complexity is easily counterbalanced by the greater
flexibility in functionality.
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The ALU however is now very close to a key limit of the ALU, in that the ALU
control code is only four bits wide, limiting the number of ALU functions to 16.
Currently there are 15 ALU functions, leaving only one free control code. If we
wanted to extensively increase ALU functionality we would have to increase
the size of the ALU control code, which is not a major issue in itself, but to
do this we would need to update the micromemory of the control unit and
increase the complexity of the ALU control signal decoder.

What further functionality could we actually add? The only key type of arith-
metic and logical operations that are not included in the ALU of our simple
processor is a set of floating point functions. However, adding floating point
functionality to our simple processor would be a huge undertaking as it would
involve very complex circuitry. Early microprocessors didn’t include floating
point functionality because as it required such a large number of transistors
it couldn’t be fitted onboard the processor. Instead in those days computer
systems used floating point co-processors - whole chips dedicated to floating
point only. These days modern processors do include floating point function-
ality. A large percentage of the transistors on board modern processors are
dedicated to providing floating point functions.

18.4 The Use Of A Supervisor Mode

Firstly, I’ll explain what is meant by a supervisor mode, and then we can see if
it would be appropriate to add this feature into our simple processor.

Our simple processor currently runs in a single state, in that all programs can
use all features of the processor. In larger computer systems, where you would
make use of an operating system, this would be a severe limitation. The first
program to cause problems, for example by locking up all system resources,
would stop the whole computer system from working.

NOTES
For a detailed discussion
of the supervisor mode,
see [Cle00].

The solution to this is that modern processors can be run in any one of a set
of different states, typically the two states user mode and supervisor mode
(sometimes known as the privileged mode). Generally, operating systems, or
their junior siblings, monitors, would make use of privileged mode. Individual
programs run by the operating system would then make use of user mode
(allowing the user program to run a safer subset of all possible instructions,
or by limiting resource access), and if a program in user mode failed in some
way, then the operating system could recover rather than causing the whole
computer system to fail. Generally, a user program communicates with the
operating system via the interrupt mechanism by using TRAP calls.

Within processors that have multiple modes, a bit within the PSR, known as
the supervisor bit is used to indicate whether the processor is in user mode or
supervisor mode.
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Now we have examined the principles behind supervisor mode, let us see
what we would have to do to our simple processor to build in a supervisor
mode.

Firstly, the easiest part of adding a supervisor mode would be to add an S
flag into the PSR to store the supervisor bit. After that, updating our processor
gets a little trickier. We would probably have to update the whole interrupt
mechanism to ensure that user mode programs couldn’t control certain parts
of the hardware, such as the I/O devices.

All things being equal, adding a supervisor mode into our processor is proba-
bly overkill given the severe limitations of what our processor can actually do.
Supervisor modes are most useful in multi-user or multi-tasking situations, nei-
ther of which our processor is designed to do. Adding a supervisor mode into
our design would give us few practical benefits, and would make the design
more complex than it needs to be.

18.5 Adding Instructions To The Instruction
Set

As we have already seen when we discussed the addition of extra general pur-
pose registers, the standard instruction set contains around 170 of a maximum
of 256 instructions. This leaves quite a large number of possible instructions
that we could implement, as we discussed back in chapter 16. Apart from the
limitation on the maximum number of instructions that we could use at any
one time, writing new instructions has no further implications on the use of our
simple processor.

It is interesting to see how some of the features we have discussed would
be rather simple to implement, while others actually have far reaching con-
sequences. In chapter 19 we will look at some of the decisions made by
processor designers when building their processors.

CHAPTER SUMMARY

More general purpose registers

� It would be easy to add further registers to our processor;

� We would have to update the CU to accommodate extra control signals
being required;

� Limitations with the instruction set however would mean that we would
have to completely change the format of our instruction set.
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Further ALU functions

� We could add further ALU functions quite easily, but we would have to
increase the width of the ALU control code;

� However, adding floating point support would make our processor much
more complex.

A supervisor mode

� A supervisor bit could be added to the PSR, and updates added to the CU
to use a supervisor mode;

� However, our simple processor would gain little benefit from such a mode.

Implications on the instruction set

� The instruction set currently has over 80 free opcodes, and therefore new
instructions could be added quite easily.
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The Real World

In this final section we take a look at the features of
real microprocessors and point out the similarities they
share with our simple processor.
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CISC and RISC
Architectures: An
Overview

CHAPTER OVERVIEW

This chapter discusses the rise of the CISC architecture and the
RISC architecture; it then discusses modern hybrid processor
architectures.

This chapter includes:

� A discussion of RISC and CISC processors;

� A brief comparison of RISC and CISC;

� Modern hybrid processors.

19.1 CISC Processors

As I mentioned in chapter 17, our simple processor is an example of a CISC,
Complex Instruction Set Computer, processor. CISC processors have been
with us since the dawn of the electronic computer, even if the term CISC
hasn’t.

Generally, as they were initially built using vacuum tube components that of-
ten failed, CISC processors began life with a very limited number of registers,
and a simple hardwired control unit. Over time, newer more reliable technolo-
gies were used, leading to more complex processor designs. To give these
newer complex processors greater flexibility the control unit was switched from
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a hardware design to a microcoded control unit similar to what we saw in chap-
ter 17, making it possible to update instruction sets using firmware. Instruction
sets grew more complex to better utilize these new processors.

However, as technologies changed, philosophies didn’t. The trend was to build
more and more complex processors, with very complicated instruction sets,
and so it was time for a paradigm shift.

19.2 RISC Processors

A group of individuals around the globe began to see this level of complexity in
processors as self-defeating. It was leading to instruction sets that were diffi-
cult to understand and use, which in turn lead to difficulties in writing compilers
for such an architecture, which lead to less efficient programs.

By the 1980s, a back-to-basics approach was mooted, whereby a sim-
pler processor design could actually lead to less power hungry and higher
performance processors.

This new architecture included as its key features:

� More general purpose registers, typically 32;

� A limited, uniform, and faster instruction set;

� Very limited addressing modes;

� Hardware compiler support;

� A hardwired control unit.

This approach was termed the RISC, Reduced Instruction Set Computer, ar-
chitecture by one of the leading RISC pioneers, David Patterson. He also

NOTES
Patterson, in league with
another major RISC
pioneer, John Hennessy,
has written two major texts
on the subject of computer
architecture focusing
inevitably on the RISC
architecture, [PH98] and
[HP02].

coined the term CISC, as a thinly veiled jibe against the complex architectures
of the time.

The RISC philosophy is best explained by referring to the four design principles
described by Hennessy and Patterson in [PH98]:

� Simplicity favours regularity. If we were to look at the instruction set of our
simple processor, we would find instructions that took zero, one, two or
three operands. It is even possible to design instructions that make use of
even more operands, and this is relatively easy to do given that our proces-
sor has a microcoded control unit. If we were to use the RISC philosophy it
makes sense to use the simplest hardwired control unit possible, and this
leads us into needing a very regular instruction set. Most RISC instruction
sets have this level of regularity. For example, rather than having ADD in-
structions that can have different numbers of operands (depending on the
addressing modes), all ADD instructions on a RISC processor will always
take the same number of operands;
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� Smaller is faster. Provide the hardware to fulfil the requirements of the
processor. Don’t fall into the trap of adding hardware features that are
rarely used, they add significant complexity with very little gain;

� Good design demands good compromises. On the other hand, don’t try
to fit all instructions into exactly the same format if this doesn’t make
sense. Many RISC instruction sets have types of instructions (arithmetic,
data transfer) that have their own instruction format, possibly not the sim-
plest format but the most pragmatic when viewed with the other design
principles;

� Make the common case fast. Even the most complex program written for
our simple processor will use very few instructions, the RISC approach
would optimize for these broad types of instructions, at the expense of
much less used instructions.

19.3 Comparing RISC To CISC

A comparison of the CISC and RISC design philosophies leads to a list of
classical differences in architectural features.

CISC RISC
Typically, a small number of gen-
eral purpose registers

Typically many (e.g. 32) general
purpose registers

Microcoded control unit Hardwired control unit
Large number of instructions Smaller number of instructions
Many addressing modes Smaller number of addressing

modes
Slow bulky instructions Faster sleeker instructions
Needs less instructions per high-
level function

Needs more instructions per high-
level function

Table 19.1 The classical differences between CISC and RISC

These classical differences between the CISC and RISC approaches are
shown in table 19.1. In reality, the lines between CISC and RISC architec-
tures are much more blurred and we’ll examine some of these factors in a
moment.
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19.3.1 Number Of Registers

Although we tend to think of RISC processors having more general purpose
registers, in reality typical RISC and CISC designs these days tend to have
roughly similar numbers. The typical number of registers in modern processors
is 32.

19.3.2 Format Of The Control Unit

Due to its simpler design, the control unit of a RISC processor is hardwired.

CISC designs tend to use many different types of instruction, many addressing
modes, etc. This leads to the requirement of a much more complex control unit
for which a microcoded control unit is most appropriate. With complex instruc-
tion sets it is more likely that the instruction set designer will make mistakes.
By using a microcoded control unit these mistakes can be repaired simply by
replacing the instruction set in firmware.

19.3.3 Addressing Modes

RISC processors typically use far less addressing modes than their CISC
counterparts. For example, within typical RISC processors the only instruc-
tions that are allowed to reference memory locations are LOAD and STORE
instructions, which often leads this form of design to be known as a load/store
architecture. This limitation immediately removes addressing modes such as
memory indirect addressing. The most common forms of addressing used
by RISC architectures are register addressing, displacement addressing,
immediate addressing, and relative addressing.

19.3.4 Instruction Types And Functionality

The simpler nature of the RISC approach vastly simplifies the instruction set.
As only LOAD and STORE instructions are used to reference memory, all other
instructions only need to make use of the general purpose registers on the
processor. This approach tends to be faster per instruction, but typically RISC
programs are a little longer than the equivalent CISC program.

In comparison, CISC instruction sets are typically far more complex than their
RISC counterparts, using many more addressing modes.
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19.4 Modern Hybrid Processors

The debate over the merits of CISC versus RISC architectures raged for a
number of years, leading to CISC designs being seen as monolithic and anti-
quated. However, the majority of today’s processors are now a hybrid of both
forms of architecture - they implement the best features of both classes of
processor architectures.

NOTES
See [TT00] and [NG99] for
descriptions of the Intel
processors and their
competitors. [HVZ02]
describes a number of
processor families
including the Intel family.
The PowerPC, a
competitor to the Intel
family with a RISC core is
briefly described in [Cri01].
[CCW02] includes a
section that describes how
to build your own
Intel-based PC system.

The Intel Pentium Pro and its derivatives are a case in point. It’s roots lie firmly
in the CISC camp, and yet it has a RISC core to provide further speed benefits.
This processor actually converts the CISC instructions from the instruction set
architecture level into RISC instructions and then runs them internally in the
RISC core. This does add overheads, but the overall gains make this process
worthwhile.

This hybrid approach brings the benefits of the RISC architecture to the largest
family of processors available on the planet, the Intel X86 range, while ensur-DEFINITION

Backwardly compatible :
A processor that will run
programs written for
processors with earlier
versions of the instruction
set architecture family.

ing that it remains backwardly compatible and so able to run the many millions
of programs that have been written to use this architectural family.

Modern processors are a hybrid of both RISC and CISC architectures, using
the best of each architecture where it is most appropriate. In the next, and
final, chapter we will investigate further features used by modern processors
to speed up program execution.

CHAPTER SUMMARY

RISC and CISC processors

� CISC processors emerged in the 1940s;

� RISC processors emerged in the 1980s;

� RISC processors follow four key rules - simplicity favours regularity, smaller
is faster, good design demands good compromises and make the common
case fast;

� Traditionally, RISC processors are seen to have more registers than their
CISC counterpart;

� Traditionally, RISC processors are seen to have less addressing modes,
less instructions and faster instructions than their CISC counterpart;
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� CISC processors traditionally have a microcoded CU, while RISC proces-
sors have a hardwired CU.

Modern hybrid processors

� The reality is that most modern processors have features of both classical
RISC and CISC designs;

� A hybrid approach brings the benefits of a faster RISC architecture, while
maintaining the backward compatibility with older CISC processors, as
required by the user community.
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Advanced
Architecture Features

CHAPTER OVERVIEW

This final chapter looks at some of the features available in modern
processors. All processors have something like our simple pro-
cessor as their ancestor but are changed out of all recognition
by the use of these advanced features to produce more powerful
processors.

This chapter includes:

� Issues of increasing clock speeds;

� The use of specialized instructions;

� The use of caches;

� An introduction to pipelining;

� An introduction to superscalar architectures;

� An introduction to multiprocessor systems.

20.1 Introduction

There is a very good reason why computer architectures have moved on from
something like our simple processor. It’s not very powerful in its current design,
and would soon be beaten by competitors, because what we mostly want from
a processor in our modern world is to be able to run our programs as fast as
possible, as cheaply as possible.

305



www.manaraa.com

Fundamentals of Computer Architecture

Most microprocessors in use today are much removed from our simple pro-
cessor; they are much more complex in many different ways. However, it is
important to realize that all von Neumann processors that you use in your mo-
bile phone, your microwave, and indeed in your desktop computer, are based
on exactly the same principles as have been demonstrated by our simple
processor throughout this text.

All of the real processors that you make use of use a number of advanced
architectural features in order to run your programs faster. This chapter will
look at some of these features.

20.2 Increasing Clock Speed

At first sight it would seem that the easiest way to speed up a processor is
to increase the clock speed. To some extent this can be the case, but there
are limits to how fast we can clock any processor, due to the latency of the
circuitry within our processor. The other issue with increasing the clock speed
of our processor is that it will tend to require more power, and it will generate
more heat which your system will have to dissipate by using heat sinks, fans
or a combination of both.

NOTES
Embedded systems issues
are described in [HVZ02].

The use of more power is a major issue for processor designers, as the trend
today is towards embedded processors. An embedded processor, such as in
a laptop or a mobile phone, needs to use as little power as possible otherwise
the device would need batteries the size of small bricks! RISC processors, due
to their simpler design (they can contain as little as a quarter of the number
of transistors of equivalent CISC designs) are used heavily in the embedded
processor market due to their lower power consumption.

It is worth noting that each new generation of processor tends to run at higher
clock speeds, as each design pushes the boundaries of manufacture that little
bit extra to make each design more power efficient than before. Clock speeds
move so quickly (no pun intended) that if I were to include here the clock
speeds of typical standard desktop PC processors, this sentence would be
out of date before you had this text in your hands.

20.3 Adding Specialized Instructions

Another feature used by modern processors is the use of specialized instruc-
tions within the instruction set to deal with particular types of data. Multimedia
data is a case in point, where many megabytes of data can make up a single
graphic image or sound file.

Multimedia data tends to be a little different to, say, that entered from your
keyboard and we can process it differently. So far we have only seen a form of
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instruction in our simple processor known as SISD (Single Instruction Single
Data) instructions. With multimedia data, for example a graphic image, we can
often process that data using a form of instruction known as a SIMD (Single
Instruction Multiple Data) instruction, which can process the data much faster
than using SISD instructions. Basically it means that one single instruction can
process a larger amount of data.

Intel added a set of 57 specialized instructions known as the MMX (MultiMedia
eXtensions) to its Pentium design in 1997, and added another set of special-

NOTES
Intel claimed that the
initials MMX didn’t stand
for anything, but they are
widely known as the
MultiMedia eXtensions.

ized instructions, the SSE (Streaming SIMD extensions) set, to the Pentium
III a few years later. The SSE set was a further 70 instructions to deal with
multimedia data.

Although RISC instruction sets have grown over the years, adding sets of
complex instructions for very specialized uses runs counter to the RISC phi-
losophy and so you are unlikely to find such highly specialized instructions on
RISC processors.

20.4 Moving Memory Into Our Processor

One particular limit to the use of our simple processor at the moment is that
many instructions require a memory access. Compared to something like a
data movement operation, a memory access is relatively slow. One way in
which to speed up our processor would be to place some very fast memory
actually inside our processor. This technique is called cache memory. Cache
memory is faster than, but also more expensive than, conventional memory.

The use of cache memory can give us the impression that all of our memory
is as fast as cache memory. We would also have to implement a method by
which we place data from memory into the cache memory, but we are helped
by the fact that our programs when stored in memory exhibit the properties
of both spatial locality and temporal locality. Spatial locality means that our
program in memory contains instructions and data that are close to each other
- our program is unlikely to be spread in small pockets all over memory. With
temporal locality, we mean that we are very likely to use instructions and data
nearby to what we have just made use of - again, we are unlikely to use
instructions placed in separate parts of memory, unless our program is the
worst piece of spaghetti code ever written!

In fact, there are two accepted levels of cache memory, known as level one,
and level two cache memory. Level one cache memory is situated actually on
the processor chip, which is the best location for cache memory, as well as
being the most expensive form of memory, and so most modern processors
limit level one cache memory to something like 16 kilobytes, where a kilobyte
(Kb) is 1024 bytes. Level two caches mostly reside in special chips associated
with the processor chip, although it is not uncommon for level two caches to
also sit on the same chip as the processor these days. Level two caches are
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generally larger than level one caches with sizes typically between 256Kb to
512Kb.

Cache memory does tend to be more expensive than main memory, and so
there is a tradeoff between speed and cost. This is why we don’t build systems
that only make use of faster cache memory.

The use of cache memory can give a major speed increase in program ex-
ecution, as we can greatly reduce the delays caused by having to access
memory. All modern processor systems make use of both level one and level
two caches.

20.5 Running More Instructions Per Clock
Cycle

Another key way to build more powerful processors is to structure them such
that they can run more instructions per clock cycle.

Typical instructions for our simple processor show that the average time to
fetch and execute a typical instruction from the default instruction set is some-
thing like 12 clock cycles if we assume that each micro-instruction takes one
clock cycle to complete. In other words we can run something like 0.08 instruc-
tions per clock cycle. This is fine for our simple processor that is designed
to show us the inner workings of processors, but it could hardly be termed
efficient.

By revising our design we could manage to run something like one instruction
per clock cycle, or even better. At first it seems inconceivable that we could
run multiple instructions per clock cycle, but it can be done. To investigate this
we need to examine pipelining and superscalar architectures.

20.5.1 Pipelining

The implementation of pipelining involves dividing up the functional aspects of
the processor into distinct stages, where each stage is designed to perform its
function in one clock cycle and pass data on to the next stage.

NOTES
For a complete pipelined
example, see [PH98].

Modern processors have in the order of five or more stages. For example, the
typical RISC stages are:

� Instruction fetch;

� Instruction decode;

� Instruction execution;

� Memory access;
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� Write back.

Each instruction still has to go through each of these stages sequentially, and
assuming each stage takes one clock cycle then each instruction will still take
five clock cycles to complete. However, the use of a pipeline allows parallelism,
in that it means that once the first instruction has moved on to the second stage
of the pipeline, a second instruction can be in the first stage of the pipeline.
At it’s most efficient, this means that this pipelined approach can complete an
instruction every clock cycle - which is a major increase on throughput to the
non-pipelined approach.

Some processors have many pipeline stages, eight or over, but as the number
of stages are increased, it becomes more complex to use them efficiently.

There are particular issues with pipelining when it is impossible to make use
of them efficiently, but that is beyond the scope of this text.

20.5.2 Superscalar Architecture

NOTES
For further information on
pipelining and superscalar
architectures, see [PH98],
[HP02] or the more
advanced text [SFK97].

The next step from the use of pipelining is the use of superscalar architectures.
This purely means that a processor with a superscalar architecture has dupli-
cate components within it. By duplicating the pipelines such that a processor
has two or more pipelines the processor can achieve greater throughput of
instructions. Again, it is important to note that this further complexity brings its
own problems, and it is very difficult to keep a superscalar architecture running
as efficiently as possible.

It is important to note that a superscalar processor still conforms to a von
Neumann architecture.

20.6 Adding More Processors

NOTES
A useful introduction to
parallel architectures is
[Cha96], while [Tan99]
dedicates a complete
chapter to the issues of
parallel computer
architectures.

Finally, another way to increase the power of our computer system is to add
more processors. This is, in a sense, similar to superscalar architectures, al-
beit instead of trying to build very complex processors, a computer system can
make use of multiple simpler designed processors.

This approach still gives concurrency, but in a different level of granularity to
the superscalar approach. The use of more processors in systems is a very
popular solution, as it means that off the shelf processors can be used to
give very powerful computing power to a system. Most large servers these
days have multiple processors. In this configuration, the problems of concur-

NOTES
See [HP02] for a detailed
discussion on
multiprocessor systems. rency have to be solved by the operating systems designers as opposed to

the processor architects.
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20.7 Full Circle

Modern processors, at their heart, perform the same functions as our simple
processor. They still conform to the structure of the von Neumann architecture,
as described nearly fifty years ago [vN00].

For all their advanced features, the core of our modern processors would be
instantly recognizable to the likes of Alan Turing and John von Neumann.

CHAPTER SUMMARY

Clock speeds

� Increased speed means increased power requirements and increased
heat;

� Embedded systems require low power requirements.

Specialized instructions

� SIMD instructions are proving popular for multimedia data.

Caches

� The use of cache memory has been popular for many years now - all
modern processors make use of cache memory;

� Cache memory is possible due to the fact that programs have the
properties of spatial and temporal locality.

Pipelining

� Pipelining means dividing the fetch-execute process into distinct stages
that can be run concurrently;

� All modern processors use pipelining to increase instruction throughput;

� Five to eight pipelined stages are now common.
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Superscalar architectures

� A superscalar architecture duplicates components within the processor to
increase the number of pipelines;

� Increasing the number of pipelines again increase throughput.

Multiprocessor systems

� A much lower level of granularity of concurrency is given by multiprocessor
systems;

� These type of systems are very popular because they can use off the
shelf processors - most large servers today have multiple processors within
them.
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The JASP Toolkit

A.1 Introducing JASP

The JASP toolkit is based around the design of a simple processor named
JASP - Just Another Simulated Processor. A diagram of this processor is
shown in figure A.1.

The original JASP design was by William Henderson of the School of
Informatics, Northumbria University.

JASP consists of a small set of registers, a microcoded control unit and
an ALU. This processor is connected to a memory to form a rudimentary
computer system.

JASP is deliberately meant to be simple technology - containing the simplest
elements from a microcoded processor. JASP is designed as an educational
tool to demonstrate fundamental concepts in a generic way, so allowing stu-
dents to gain an understanding of them prior to transferring to ‘real world’
processors.

Within the toolkit we have two simulations of the JASP processor, the main one
being JASPer (Just Another Simulated Processor emulator ), the second being
Aspen (Another Simulated Processor emulation). The toolkit also contains an
assortment of useful tools to aid the use of the processor simulators.

The set of tools includes:

� JASPer - the main simulated processor, JASPer will run on Windows 95
and above;

� Aspen - a command-line version of JASPer that can be used with DOS or
Linux;

� The JASP cross-assembler - a cross-assembler, written in Perl, that as-
sembles programs for the JASP architecture. The assembler should work
on any platform with a Perl installation, but it has been tested under DOS
and Linux only;
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� The JASP C−− cross-compiler - a cross-compiler for the JASP architec-
ture. It can be used with DOS or Linux;

� The basic and advanced JASP instruction sets;

� Two software libraries, for use with each instruction set.

A reference to the functionality of the JASP processor is given below, followed
by descriptions of each tool in the toolkit.

ALU
Control
Unit

Processor

MAR

MDR

A

B

ALUx ALUy

ALUr

IR

SP

INC

PC

PSR

Figure A.1 The JASP processor

A.1.1 Obtaining The JASP Toolkit

All the tools within the JASP toolkit are copyright Mark Burrell, except for the
C−− cross-compiler which is copyright David Harrison.
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The authors of this toolkit, and the distributors, cannot accept responsibility
for any disruption, damage and/or loss to your data or computer system that
may occur while using this package. This is free software and comes with no
warranty.

To obtain a copy of the JASP toolkit go to this website:

� http://www.palgrave.com/science/computing/burrell/

Additionally, a copy of the JASP toolkit is available on the accompanying CD.

While the authors hold copyright on all JASP executables and documentation,
it may be freely distributed at no cost (excluding minimal expenses), providing
that it is distributed intact, and not subsumed into any other work.

A.1.2 Installing The JASP Toolkit

The JASP toolkit has various tools, some of which work in Microsoft Win-
dows, while others work on Linux systems. The installation instructions for
each environment are given below.

Refer to the readme.txt file within the toolkit for a detailed description of each
file, and how it can be used.

Installing On Windows

The JASP toolkit is distributed as a zipped archive, and you need to unzip this
archive into a directory on your computer. None of the JASP tools make use
of the Windows registry, and so no further installation is necessary, apart from
you may set up any desktop icons or menu options as you prefer.

You can additionally set up an environment variable called JASP, and update
your path as listed below - but this is only really required if you intend to make
use of the JASP assembler or Aspen.

If you do wish to update your path and use the JASP environment variable
then place the following lines in your autoexec.bat file (this assumes you
have installed the JASP toolkit at the location c:\jasp\):

set path=%path%;c:\jasp\

set JASP=c:\jasp\

317



www.manaraa.com

Fundamentals of Computer Architecture

Installing on Linux

Once again, unzip the archive into a directory on your computer - something
like ~/jasp.

As all the tools for Linux are command-line driven, it makes sense to set up the
path and the JASP environment. You may need to do this differently, depending
on your flavour of Linux, but on my system, using the bash shell, all I need to
do is update .bash profile with:

PATH="$PATH:~/jasp/"

export JASP=~/jasp/

Additionally, to make the assembler work successfully, you will need to ensure
that the first line of the jasm.pl program uses the correct location for Perl on
your system. You may also want to set up a logical file to point to the jasm.pl
like this:

cd $JASP
ln -s jasm.pl jasm

A.2 The JASP Processor - A Reference

This section covers:

� A description of the function of each register;

� The micro-instructions understood by the JASP control unit;

� A description of the memory map, including a description of the memory-
mapped peripherals;

� The interrupt mechanism;

� The file formats used by JASP for both instruction sets and machine code.

A.2.1 Registers

The processor registers are listed in table A.1.
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Register Width (bits) Description
PC 16 Program counter - is used to keep track of the memory address

storing the next instruction to be executed
INC 16 Incrementer - is used to add one to the value held in the PC,

something that needs to occur very often in most programs. Using
the incrementer (effectively as a specialist register) is faster than
using the ALU for this particular task, and importantly does not
affect the PSR flags

A 16 General Register A - is the first of two general purpose regis-
ters, programmers can use the general purpose registers to store
program bit patterns

B 16 General Register B - is the second of the two general purpose
registers

MAR 16 Memory Address Register - is used as a specialist register to store
the address of the memory location that we need to read from or
write to

MDR 16 Memory Data Register - is used as a specialist register to store
the data that we have just read from memory or need to write to
memory

IR 16 Instruction Register - is the specialist register where we store the
instruction once it has been fetched from memory

ALUx 16 Arithmetic Logic Unit X Register is the first of two specialist
registers where we store bit patterns to be used in ALU operations

ALUy 16 Arithmetic Logic Unit Y Register is the second of two specialist
registers where we store bit patterns to be used in ALU operations

ALUr 16 Arithmetic Logic Unit Result Register is the specialist register
where the result from an ALU operation is stored

SP 16 Stack Pointer - is the specialist register used to store the address
of the top of the stack held in memory

PSR 16 Processor Status Register - is where we store information about
the state of the processor, including the state of the last ALU
operation

Table A.1 Processor registers

A.2.2 Micro-Instructions

The JASP processor has a micro-programmed control unit, where each ma-
chine code instruction is defined as a sequence of micro-instructions known
as a micro-program. These micro-programs are used by the control unit to
execute individual instructions.

These micro-programs can be grouped together in an instruction set file,
sometimes referred to as a microcode file. Two instruction set are distributed
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with the JASP toolkit, and it is a simple process to define and use new
instructions.

All the micro-instructions that are recognized by the processor can be
separated into one of four distinct micro-instruction groups. These are:

� Data movement micro-instructions;

� ALU micro-instructions;

� Test micro-instructions;

� Processor control micro-instructions.

All the micro-instructions within each group are described below.

Data Movement Micro-Instructions

There are over forty data movements, as listed in tables A.2 and A.3.

RTL Notes
A←[MDR]
A←[ALUr]
A←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
B←[MDR]
B←[ALUr]
B←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
B←[PC]
PC←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
PC←[ALUr]
PC←[B]
PC←[MDR]
PC←[INC]
INC←[PC]
ALUx←[MDR]
ALUx←[A]
ALUx←[B]
ALUx←[IR(operand)] 8-bit transfer, value is sign-extended

Table A.2 Data movement micro-instructions
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RTL Notes
ALUx←[PC]
ALUx←[ALUr]
ALUx←[SP]
ALUy←[A]
ALUy←[B]
ALUy←[MDR]
ALUy←[IR(operand)] 8-bit transfer, value is sign-extended
MAR←[PC]
MAR←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
MAR←[ALUr]
MAR←[A]
MAR←[B]
MAR←[SP]
MAR←[MDR]
MDR←[A]
MDR←[B]
MDR←[ALUr]
MDR←[ALUx]
MDR←[PSR] Moves flag contents
MDR←[M[MAR]] Performs a memory read operation
M[MAR]←[MDR] Performs a memory write operation
CU←[IR(opcode)] 8-bit transfer
IR←[MDR]
SP←[ALUx]
SP←[ALUr]
SP←[MDR]
SP←[IR(operand)] 8-bit transfer, hi-byte of result = 0x00
PSR←[MDR] Restore 16-bit PSR contents
ALUy←[JUMPERS(IntBase)] Transfer the interrupt base address to ALUy
ALUx←[PSR(IntVec)] Transfer the interrupt vector to ALUx
PSR(IntVec)←[IR(operand)] Set the interrupt vector
PSR(IntVec)←[MDR] Set the interrupt vector with low 3-bits of

MDR

Table A.3 Data movement micro-instructions - continued

ALU Micro-Instructions

The ALU micro-instructions are listed in table A.4.
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Code Operation RTL Notes
0000 ADD ALUr=[ALUx]+[ALUy] Perform a 2’s complement ADD operation,

adding the ALUx and ALUy bit patterns to-
gether and storing the result in the ALUr
register

0001 ADC ALUr=[ALUx]+[ALUy]+[PSR(c)] Perform a 2’s complement ADC operation,
adding the ALUx and ALUy and C flag to-
gether and storing the result in the ALUr
register

0010 SUB ALUr=[ALUx]-[ALUy] Perform a 2’s complement SUB operation,
subtracting the ALUy from the ALUx bit
pattern and storing the result in the ALUr
register

0011 SL ALUr=[ALUx]<<1 Perform a logical shift left on the ALUx,
storing the result in the ALUr

0100 SR ALUr=[ALUx]>>1 Perform a logical shift right on the ALUx,
storing the result in the ALUr

0101 AND ALUr=[ALUx]&[ALUy] Perform a logical AND operation on the
ALUx and ALUy bit patterns and storing the
result in the ALUr register

0110 OR ALUr=[ALUx]|[ALUy] Perform a logical OR operation on the ALUx
and ALUy bit patterns and storing the result
in the ALUr register

0111 NOT ALUr=~[ALUx] Perform a logical NOT operation on the
ALUx and storing the result in the ALUr
register

1000 NEG ALUr=~[ALUx]+1 Perform a 2’s complement negative opera-
tion on the ALUx and storing the result in
the ALUr register

1001 INC ALUr=[ALUx]+1 Add 1 to the ALUx bit pattern, storing the
result in the ALUr

1010 DEC ALUr=[ALUx]-1 Subtract 1 from the ALUx bit pattern, storing
the result in the ALUr

1011 SWAP ALUr(7:0)=[ALUx(15:8)];
ALUr(15:8)=[ALUx(7:0)]

Swap the most significant byte and the least
significant byte of the ALUx, storing the
result in the ALUr

1100 MUL ALUr=[ALUx]*[ALUy] Multiply the ALUx value by the ALUy value,
storing the result in the ALUr

1101 DIV ALUr=[ALUx]/[ALUy] Divide the ALUx value by the ALUy value,
storing the result in the ALUr

1110 MOD ALUr=[ALUx]%[ALUy] Divide the ALUx value by the ALUy value,
storing the remainder in the ALUr

Table A.4 ALU micro-instructions
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Whenever an ALU operation is executed, the PSR flags V, N, C and Z are
updated. Table A.5 shows how the flags are updated by each ALU operation -
a key to this table is given in table A.6.

Operation V N Z C
ADD * * * *
ADC * * * *
SUB * * * *
SL 0 * * *
SR 0 * * *
AND 0 * * 0
OR 0 * * 0
NOT 0 * * 0
NEG * * * *
INC * * * *
DEC * * * *
SWAP 0 * * 0
MUL * * * 0
DIV * * * 0
MOD * * * 0

Table A.5 How ALU operations affect the PSR flags

Flag Meaning
V * means that if 2’s complement overflow occurs then V=1 else V-0

(division overflow in cases of DIV and MOD)
0 means that V=0

N * means N=MSB(ALUr)
Z * means if (ALUr==0) then Z=1 else Z=0
C * means if (carry from MSB of ALUr) then C=1 else C=0

* except with SR this means if (carry from LSB of ALUr) then C=1 else C=0
0 means that C=0

Table A.6 The key to figure A.5
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Test Micro-Instructions

The four PSR flags may be tested. If a test evaluates to TRUE, any remaining
micro-instructions in that microprogram are executed. Otherwise the micro-
instructions following the test are ignored.

The valid test micro-instructions are listed in table A.7.

RTL Notes
if(PSR(c)==1) Carry flag set
if(PSR(c)==0) Carry flag clear
if(PSR(n)==1) Negative flag set
if(PSR(n)==0) Negative flag clear
if(PSR(z)==1) Zero flag set
if(PSR(z)==0) Zero flag clear
if(PSR(v)==1) Overflow flag set
if(PSR(v)==0) Overflow flag clear

Table A.7 Test micro-instructions

Processor Control Micro-Instructions

The valid processor control micro-instructions are listed in table A.9.

ALU Connectivity To The Data Bus

The individual registers of the ALU are connected to the data bus via the ALU
data bus connection circuitry. A 2-bit code is given to this circuitry to connect
or disconnect ALU registers from the bus. The codes are listed in table A.8.

Code Notes
00 All ALU registers disconnected from the bus
01 ALUx is connected to the bus
10 ALUy is connected to the bus
11 ALUr is connected to the bus

Table A.8 ALU connectivity to the data bus
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A.2.3 Memory

JASP has 8Kb of memory, accessed as 4096 16-bit words (addresses $0000
to $0FFF). Some implementations of JASP can have extra memory installed.
For example, JASPer can have a maximum of 65536 words of memory
(addresses $0000 to $FFFF).

An address points to a 16-bit word and all memory accesses are words. Note
that this may not be the case with some popular microprocessors which have
byte-addressable memories.

RTL Notes
PSR(I)=0 Set the interrupt flag to 0
PSR(I)=1 Set the interrupt flag to 1
PSR(E)=0 Set the interrupt enable flag to 0
PSR(E)=1 Set the interrupt enable flag to 1
HALT Processor halt
NOP No operation

Table A.9 Processor control micro-instructions

Two registers are associated with memory accesses. The Memory Data Reg-
ister (MDR) contains the data value which is about to be written to memory
or a value which has been read from memory. The Memory Address Register
(MAR) contains the memory address of a read or write operation.

Think of MAR as a pointer to a word of memory. The pointer may be moved
by altering the value held in MAR. Values may be transferred from the MDR to
memory (Write) or from Memory to the MDR (Read).

To write a value into memory you do the following:

RTL Description

MDR<-00FF Place data in MDR
MAR<-0010 Place address in MAR
M[MAR]<-[MDR] Update memory

Note the sequence of operations performed when writing data into memory.
The address and data values are loaded into the MAR and MDR respectively
and a write cycle is performed.

A memory read is as follows:
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RTL Description

MAR<-0010 Place address in MAR
MDR<-[M[MAR]] Read memory

MDR now contains [M[0010]]

The memory map is shown in figure A.2.

00FF
0100

0FFF
1000

FFFF

00F8
00F7

0000

00DF
00E0
00E1
00E2
00E3
00E4

00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0

Not installed in
default configuration

User programs and data

RAM

Year
Month
Day

Reserved
Timer

Hour
Minute 
Second

System
Clock

Interrupt vector table

Reserved

Description

IDR
ISR
ODR
OSR Memory mapped

I/O Device

RAM

User programs and data

Address

Peripheral box communication

Figure A.2 The JASP memory map
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When accessing or writing to memory, all addresses are wrapped. So for ex-
ample, if memory is installed up to $0FFF, then writing to the address $1FFF
will still cause memory to be updated.

It can be seen that the small memory of the JASPER processor is used for a
variety of purposes. The bulk of the memory is available for storing user data
and instructions.

All peripherals have default locations within the memory map, but their
locations are configurable.

Memory Mapped I/O

Handshaking needs to be used in order to perform I/O.

To write a character to the screen, first check that the OSR port is set to 1, if
it’s not go into a loop until it is. Only then write the character to the ODR.

To read a character from the keyboard, keep checking until the ISR is set to 1,
only then should you read the character from the IDR.

Here is a piece of code that shows handshaking for both input and output:

* A demonstration of polled I/O
*
* This program reads 10 characters from the keyboard
* and then prints them all out once they’ve been entered
*
OSR EQU $E3 * Output Status Register (OSR)
ODR EQU $E2 * Output Data Register (ODR)
ISR EQU $E1 * Input Status Register (ISR)
IDR EQU $E0 * Input Data Register (IDR)

ORG 0
MOVE #$00,B * count is storage for our
MOVE B,count * counter value

loop MOVE ISR,A * Get ISR
CMP #$00,A * is a char available?
BEQ loop * no - wait some more
MOVE IDR,A * read the char

MOVE count,B * the address to write the
ADD #data,B * value to is count+data
MOVE A,(B) * write the char in there
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MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10 and
BEQ gotchars * move to next section if we have
MOVE B,count * otherwise write count back
JMP loop * and get another char

gotchars MOVE #$00,B * count is storage for our
MOVE B,count * counter value

write MOVE OSR,A * get OSR
CMP #$00,A * OSR 1 can print, OSR 0 can’t print
BEQ write * not yet, wait some more

MOVE count,B * the address to read the
ADD #data,B * value from is count+data
MOVE (B),A * get the char in there
MOVE A,ODR * print the char

MOVE count,B * add 1 to count
ADD #$01,B *
CMP #$0A,B * and see if we have reached 10
BEQ done * and move to end if we have
MOVE B,count * otherwise write count back
JMP write * and write another char

done HALT * done

count DS.W $01 * the counter
data DS.W $0A * storage for our 10 characters

Current System Time

Additionally, JASP has a system clock device. The current date and time is
accessible from $00E8 to $00ED. No handshaking is required, simply access
the particular memory location for the required date/time value. You cannot
write to these memory locations, although no errors are raised if you try.

Peripheral Box Communication

A prototype peripherals board has been configured to work with the JASP
processor - it was defined and built by Ian Chilton, under the supervision of
Mark Burrell.
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The peripherals board uses four memory locations, by default installed be-
tween $00E4 and $00E7, and the JASP processor can communicate with
various input and output devices on the board. These include DIP switches, a
buzzer, various LEDs and digit displays.

The peripherals board is purely a prototype for demonstration purposes only.

Reserved Addresses

It is recommended that you do not use the reserved memory addresses for
storage - it could make your programs incompatible with future versions of
JASP.

A.2.4 The Interrupt Mechanism

The interrupt mechanism makes use of an interrupt vector table stored in
memory, and the I and E flags of the PSR.

The JASP processor can only deal with a single interrupt at any given time -
any further interrupts generated while the first interrupt is being handled will
be ignored. The actual details of the interrupt mechanism are definable within
the instruction set. Within the default instruction set the interrupt mechanism
is defined as:

PSR(I)=0 interrupt flag = 0
MAR<-[SP] } save PSR
MDR<-[PSR] } on the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
PSR(E)=0 interrupt enable flag = 0
ALUy<-[JUMPERS(IntBase)] }
ALUx<-[PSR(IntVec)] } build the vector address
ALUr=[ALUx]+[ALUy] }
MAR<-[ALUr] } obtain the handler address
MDR<-[M[MAR]] }
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PC<-[MDR] load address of handler into PC

The position of the vector table is configurable, but it defaults to the locations
$00F0 to $00F7.

A.2.5 JASP Files Reference

The JASP engine understands two file formats, these are the micro-instruction
and machine code formats. In previous versions these formats proved to be
somewhat stringent, and so have been made much more flexible.

Micro-Instruction File Format

Each micro-instruction file consists of a set of zero or more instruction defini-
tions. These definitions begin with an opcode directive and an opcode, and
then a set of micro-instructions to enter into the control unit micro-memory.
Blank lines can exist anywhere within the file, and comments can be written
after an asterisk. Each line in the micro-instruction file can be a maximum of
250 characters.

An instruction definition can also include two further directives, these are the
mnemonic and description directives. The mnemonic directive describes
the form of the mnemonic while the description directive gives a brief
description of the opcodes function. Both the mnemonic and description
directives expect their values to be within double quotes. Neither of these
tags are mandatory, both being set to null strings if they are not included.
If the line is not a directive and not a comment it is expected to hold a valid
micro-instruction, followed by an optional comment.

A typical micro-instruction file might consist of a number of micro-programs
each like the following instruction definition:

Opcode d0
* addr 00 to FF
Mnemonic "JSR addr"
Description "Jump to subroutine at a direct address"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
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SP<-[ALUr] }
PC<-[IR(operand)]

Instruction Sets

JASP is provided with a default instruction set (instruct.mco). This instruction
set contains all single word instructions where the hi-byte is the opcode. This
set is limited to addressing memory in the range $0000 to $00FF.

To use the full memory available, use the advanced instruction set in
advanced.mco, however it is advisable to only use this instruction set in
conjunction with the assembler rather than with hand coding.

Machine Code File Format

Each machine code file consists of a set of zero or more machine code seg-
ments. These segments begin with an org directive and address, and then a
set of 16-bit values to enter into memory. Blank lines can exist anywhere within
the machine code file, and comments can be written after an asterisk charac-
ter. A simple program is shown below. Each line in the machine code file can
be a maximum of 250 characters. If a line does not begin as a comment and
does not have an org directive, then it is assumed to be a 16-bit value.

org 0400
45FF
3200
0001
F000 * this is the only comment in this program

A.3 JASPer

JASPer originally came into being as a clone of part of a software package for
VAX/VMS known as ASP, or Animated Simple Processor, designed and writ-
ten by William Henderson. The first Windows clone was known as WinASP,
but when the VAX/VMS version was no longer supported then this package
(which had grown into a package in its own right) became known as ASP. It
has now changed its name (again!) to JASPer, to avoid any confusion with
Microsoft ASP which is something totally different altogether.
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So what is JASPer? It is a package that simulates the JASP processor. It can
be used in one of two modes - either white-box mode where the internal reg-
isters of the processor are visible, or black-box mode where the user can see
the output produced by their programs. What this figure does not demonstrate
is that, when instructions are run (either individual micro-instructions or whole
machine code programs) all data movements are animated within the package
- graphically showing the inner workings of the processor.

Figure A.3 JASPer - the main graphic display

There are actually two different white-box views of the processor that can be
selected. The first, as illustrated in figure A.3 is the main animated display.
A second, simpler display, can be used instead - it is used for a number of
screen-shots in the main text of the book - the simpler display is shown in
figure A.4.
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A.3.1 How To Use JASPer

The functionality of JASPer is accessed via the menu bar and the buttons
below the menu bar:

Figure A.4 JASPer - the simple display

The Menu Bar

The menu bar has five entries. These are for controlling the processor,
memory functions, etc. The menu bar looks like this:
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As you can see, each entry has one letter underlined, pressing this letter
together with the ALT key is the keyboard equivalent of clicking on the entry.
For example, typing ALT-M will bring up the memory menu.

The Buttons

The buttons provide the same functionality as the menu bar, only in a graphical
manner.

Usage

Both the menu bar and the buttons can be broken down into the same five key
function areas, and these are now described in turn.

The File Menu

The file menu accessed from the keyboard provides the same functionality as
the following set of buttons.

Button Menu Option Description

Open This option brings up a file open dialogue, allowing the user to open
either a microcode file (MCO), or a macrocode file (JAS).

Memory Dump Save JAS file containing all the contents of memory.
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Button Menu Option Description

Jumper Settings This allows the user to control the animation features, including anima-
tion speed.

Switch State This option switches between black-box mode and white-box mode.
JASPer always starts in white-box mode, where the registers and data
paths of the processor can be seen. In black-box mode the JASPer win-
dow switches to a view of JASPer’s output - any I/O output will be seen
here.

The Processor Menu

The processor menu is equivalent to the following set of buttons:

Button Menu Option Description

Registers Brings up a dialogue where the user can change register values.

Flags Brings up a dialogue where the user can change flag values.

ALU Brings up a dialogue where the user can perform ALU operations.

Data Movement Allows the user to perform all data movement operations. Click on the
destination register first, followed by the source register in order to
perform the data movement.
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Button Menu Option Description

View Opcodes This option displays a summary of all the currently loaded opcodes
loaded into the processor. There are three parts to the display, the
opcode, the mnemonic and the brief description.

Microcode List This option doesn’t have an equivalent button - it combines both the ALU
and data movement operations. On using this option a further menu
is displayed, allowing the user to select a particular micro-instruction
to run - divided into ALU and data movement micro-instructions. The
data movement micro-instructions are displayed by destination - one
can select the destination and then an appropriate source register.

Fetch Cycle This option runs a single fetch cycle.

Execute Cycle This option runs a single execute cycle.

Trace This option runs one fetch-execute cycle

Go This runs the processor. The processor stops when either the Escape
key (acting as a reset button) is pressed, the mouse is clicked on the
JASPer window, or a halt instruction is executed. Note that, if animation
is turned on, even if the Escape key or the mouse is clicked on the
JASPer Window, the animation displays until either the current fetch or
the current execute cycle completes.

Reset This option resets the processor, as if the processor power switch has
been cycled.

The Memory Menu

The memory menu accessed from the keyboard provides the same function-
ality as the following set of buttons.
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Button Menu Option Description

Read Perform a memory read operation

Write Perform a memory write operation

View This option brings up a dialogue which allows the user to view the con-
tents of memory. For each location it displays the address, value and
mnemonic (of the opcode that is stored in the most significant byte of
the memory address)

Block Fill This option brings up a dialogue that allows the user to fill user defined
memory locations with a definable word value.

Block Move This option brings up a dialogue that allows the user to copy the con-
tents of a given set of contiguous memory locations to another memory
location. The original contiguous memory is unaffected.

The Screen Menu

The memory menu accessed from the keyboard provides the same function-
ality as the following button.

Button Menu Option Description

Clear Terminal Terminal Clears the screen when JASPer is in black-box mode.

The Help Menu

The help menu accessed from the keyboard provides the same functionality
as the following set of buttons.
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Button Menu Option Description

Help Index This option displays the Windows help file for JASPer.

About JASPer This option brings up a dialogue that displays the current version of
JASPer and build date, together with a copyright statement.

A.3.2 JASPer Parameters

Parameters for JASPER are:

JASPER [/h*elp]

or

JASPER [/l*oad={macrocodefile}][/m*co={microcodefile}] [/pc={addr}]
[/n*odefault] [/bw] [/anim_off]

The meaning of each parameter is as follows:

/help - displays the parameters for the program.
/load - loads the given macrocode file
/mco - loads the given microcode file
/pc - sets the PC to the given value prior to running
/nodefault - instructs the processor not to load the default

instruction set
/bw - use the simple display rather than the full

graphic
/anim_off - animation switched off by default

A.4 Aspen

Aspen is a command-line version of JASPer, obviously without any graphical
display apart from a simple text output. Aspen actually uses the same proces-
sor engine as JASPer, and so the two programs share the (nearly) exact same
functionality. Figure A.5 shows Aspen running in a Windows 95 DOS window.
Versions of Aspen will run on any version of DOS (from V5.0 upwards), any
version of Microsoft Windows and Linux (ELF binary).
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Figure A.5 Aspen

When you use Aspen, you need to either make sure the default instruction set
and the Aspen help file (aspen.hco) is in the same directory, or make use of
the JASP environment variable as detailed previously. Using Aspen, and any
text editor of your choice, it is possible to use even the lowliest 386 PC to
develop programs for JASPer.

If you have the JASP environment set, then when you attempt to open either
a microcode or a program file from within Aspen it will first attempt to find that
file within the current directory, and if it can’t find the file it will then look for it
in the directory named in the JASP environment. Please note that the 16-bit
version of Aspen only understands the 8.3 DOS naming convention.

Use the help facility within Aspen by typing help at the chevron prompt.

A.4.1 Aspen Parameters

Parameters for Aspen are:

ASPEN [/h*elp]

or

ASPEN [/l*oad={macrocodefile}][/m*co={microcodefile}] [/g*o] [/q*uit]
[/pc={addr}] [/n*odefault]

339



www.manaraa.com

Fundamentals of Computer Architecture

The meaning of each parameter is as follows:

/help - displays the parameters for the program.
/load - loads the given macrocode file
/mco - loads the given microcode file
/go - instructs the processor to begin executing
/quit - instructs the program to close once the given

execution process has finished
/pc - sets the PC to the given value prior to running
/nodefault - instructs the processor not to load the default

instruction set

A.4.2 Example Programs Running on the JASP

Here is the same program, clock.jas as distributed with the JASPer package,
seen running in both JASPer and in Aspen.
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A.5 The JASP Assembler

The JASP Cross-Assembler, to give it its full title, is a program written in Perl
that can be used to ease the process of creating assembly language programs
for the JASP processor.

The assembler should work on any system with a Perl installation, although it
has only been test on DOS and Linux systems.

A.5.1 The Instruction Set Used

By default the assembler uses instruct.mco as the default instruction set.
It then attempts to assemble your assembly language program using the
information it finds within the instruction set file.

A.5.2 Directives

It understands a limited set of directives, listed here:
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Directive Example Description
ORG org $0000 Sets the program origin
DC.B DC.B ’hello’,0 Stores a byte in memory, can also be used to specify text

strings
DC.W DC.W $1234 Stores a word in memory
DS.W DS.W 1 Defines storage in words
EQU IDR EQU $E0 Defines a constant
MCO MCO "advanced.mco" Specifies the instruction set to use
LPC LPC $0100 Sets the PC to a particular value
USE USE "advancedio.lib" Include a library file in the program

When a USE directive is encountered, the assembler attempts to load the file
from the current directory, and if that fails then it attempts to load the file from
the directory listed in the the JASP environment variable.

A.5.3 Usage

The options of the assembler are as follows:

jasm [-h]

or

jasm [-m mco][-a asm][-l type][-o filename]

The meaning of each parameter is as follows:

-m mco : loads a microcode file (can be multiple files
separated by a ’:’)

-a asm : loads a JASP assembler file
-l type : output type can be default|debug|code|printout
-o filename : send assembler listing to filename listed
-h : list this help information.

Additionally, the assembler understands a force 32bit directive that can be
placed in instruction set files. This has the effect of forcing all machine code
instructions to be written in 32 bits rather than the standard 16 bits.
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A.5.4 Operand Sizes

The assembler, not understanding anything about assembly language, has to
make assumptions about the bit length of operands. To do this it makes use of
information within the instruction mnemonics.

For example, if the assembler sees something like data, addr or dis in a
mnemonic then it assumes that this operand should be 8 bits wide. However,
if the assembler sees something like dataword, addrword or disword in a
mnemonic then it assumes that this operand should be 16 bits wide.

The assembler also makes sure that words begin and end on word bound-
aries, and will pad out any odd bytes, to form 16-bit words, with zeroes to
ensure that all words are word aligned.

A.5.5 Error Messages

As the assembler has no real understanding of assembly language, but rather
can only read an instruction set and output machine code following very strict
rules, this means that often its error message leave a little to be desired.
Please treat this as part of the learning process - after all, without the as-
sembler you would have to encode every assembly language program by
hand!

A.6 The JASP C−− Compiler

The JASP C−− cross compiler is written by David Harrison. The program,
jcc, compiles programs written in a small educational language called C−−
into assembly language files that can then be assembled by the JASP assem-
bler. The name of the language is a pun on the language C++; David admits
it isn’t a great pun.

The syntax rules for high-level languages tend to be written in a form known
as Extended Backus-Naur Form, or EBNF. Within EBNF, symbols are defined
in terms of other symbols. For example, an if construct in C−− is described
as:

if ::= ’if’ ’(’ express ’)’ statement ’else’ statement
| ’if’ ’(’ express ’)’ statement

This means that an if construct begins with the word if followed by a condi-
tion expression that is within brackets. If the condition is true then statement

343



www.manaraa.com

Fundamentals of Computer Architecture

is executed (the definition of statement is elsewhere), and the statement after
the else is executed if the condition is false. Alternatively, the if statement
can omit the else section.

Lastly, any entries within square brackets, as shown below are optional.

variable dec ::= type ident [ ’=’ literal ]

The production rules for C−− are given here:

program ::= declarations compstat

declarations ::= { declaration ’;’ }

compstat ::= ’{’ statement statements ’}’

statements ::= { statement }

declaration ::= constant_dec | variable_dec

statement ::= compstat | assign | input | output | if | while

constant dec ::= ’const’ type ident ’=’ literal

variable dec ::= type ident [ ’=’ literal ]

assign ::= variable ’=’ express ’;’

input ::= ’cin’ ’>>’ ident ’;’

output ::= ’cout’ ’<<’ express ’;’

if ::= ’if’ ’(’ express ’)’ statement ’else’ statement
| ’if’ ’(’ express ’)’ statement

while ::= ’while’ ’(’ express ’)’ statement

type ::= ’bool’ | ’string’ | ’int’

ident ::= letter ident_chars

literal ::= boolit | stringlit | intlit

letter ::= ’A’ | .. | ’Z’ | ’a’ | .. | ’z’
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ident_chars ::= { ident_char }

boolit ::= ’false’ | ’true’

stringlit ::= ’"’ { printable } ’"’

intlit ::= sign uint | uint

ident_char ::= letter | digit | ’_’

printable ::= ’ ’ | .. | ’~’ {ASCII codes 0x20 to 0x7F)

sign ::= ’+’ | ’-’

uint ::= digit { digit }

digit ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

express ::= basic relop express | basic

basic ::= term addop basic | term

term ::= factor mulop term | factor

factor ::= literal | ident | ’(’ express ’)’ | ’!’ factor

mulop ::= ’*’ | ’/’ | ’%’ | ’&&’

addop ::= ’+’ | ’-’ | ’||’

relop> ::= ’<’ | ’<=’ | ’==’ | ’>=’ | ’>’ | ’!=’

Using these rules we can compile programs such as the example below,
provided by David:

// Computes the maximum, minimum, total and average of a list
// of integers read from input. The input is terminated by a
// 0 on the input.

int n = 0 ; // Number read in
int max = 0 ; // Maximum
int min = 32767 ; // Minimum
int total = 0 ; // Total
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int count = 0 ; // Number of inputs
int average = 0 ; // Average
bool done = false ; // Input done flag.
bool done2 = true ; // Input done flag.
const string prompt // Prompt for input

= "Number : " ;
const string mess1 // Output messages

= "Maximum : " ;
const string mess2

= "Minimum : " ;
const string mess3

= "Total : " ;
const string mess4

= "Average : " ;
const string endl // End of line for output

= "\n" ;
const string countzero

= "count was zero" ;

{
// Prompt for and read integer. If number is 0 we’re done, otherwise
// increment count, add number into running total, check if it’s
// the maximum or minimum so far and prompt for the next number.
while (!done)
{ cout << prompt ;
cin >> n ;
if (n == 0)
{ done = true ; }
else
{ count = count + 1 ;

total = total + n ;

if (n > max)
{ max = n ; } ;
if (n < min)
{ min = n ; } ;

} ;
} ;

// Compute the average.
if (count != 0)
{
average = total / count ;

}
else
{

cout << countzero;
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cout << endl;
};

// Output results
cout << mess1 ;
cout << max ;
cout << endl ;
cout << mess2 ;
cout << min ;
cout << endl ;
cout << mess3 ;
cout << total ;
cout << endl ;
cout << mess4 ;
cout << average ;
cout << endl ;

}
// End of program

The compiler doesn’t take any parameters, instead re-direction is used to pass
a C−− program to it, and the assembly language output can be re-directed
into an assembly language program file.

For example, imagine that we have a C−− program called myprog.c-- that
we want to run in Aspen. Provided that the program compiles with no errors
we would do the following:

jcc < myprog.c-- > myprog.asm
jasm -a myprog.asm -o myprog.jas
aspen /l=myprog.jas /m=advanced.mco

The first line uses the compiler to produce the assembly language program.
In the second line we assemble this to the machine code program. The third
line loads the program into Aspen, along with the advanced instruction set as
used by all programs created with the compiler. Once loaded into Aspen (or
JASPer) we can run the program.

Lastly, it is worth noting that the program jcc doesn’t make use of the JASP
environment variable, but then again it doesn’t need to.
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A.7 The JASP Software Libraries

Two libraries of subroutines are part of the JASP toolkit. The first library,
basicio.lib offers a few subroutines that are useful for text input and output,
and is only really intended to demonstrate the usefulness of libraries. It can
only be used in relatively small programs if they are intended to fit into memory
between $0000 and $00DF.

The second library, advancedio.lib, is more useful and offers a number of
extra subroutines not offered by basicio.lib.

To use a library in your assembly language program you need to use a USE
directive as shown here:

* include a library
USE "basicio.lib"

A.7.1 The Basic I/O Library

The subroutines provided by basicio.lib are:

* putstring - prints packed strings, address has to be in register A.
* putchar - prints a single character from lo-byte of register B.
* putword - prints a word held as 4 hex chars (from A)
* putbyte - prints a word held as 2 hex chars (from lo-byte of A)
* getchar - get a character from the keyboard, char in A register.
* newline - print a CR/LF pair

A.7.2 The Advanced I/O Library

The subroutines provided by advancedio.lib are superset of those offered
by basicio.lib. This library is so large that it can only usefully be used in
programs written for above $0100 in memory using the advanced instruction
set.

Here are the subroutines offered by this library:

* putdbyte - prints lo-byte of register A as decimal value.
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* putdword - prints a word held as a decimal number
* putstring - prints packed strings, address has to be in register A.
* putchar - prints a single character from lo-byte of register B.
* putbyte - prints a word held as 2 hex chars (lo-byte of A)
* putword - prints a word held as 4 hex chars (from A)
* getchar - get a character from the keyboard, char in A register.
* newline - print a CR/LF pair
* getustring - read in an unpacked character string, address in A
* and required size in B
* putustring - print an unpacked character string, address in A
* inkey - read a character from the keyboard if available.
* getdword - read up to 6 chars and interpret as a signed decimal value
* getbyte - read 2 chars and interpret as a hexadecimal value
* getword - read 4 chars and interpret as a hexadecimal value
* getdbyte - read up to 4 chars and interpret as a signed decimal value
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The Basic Instruction
Set Quick Reference

This is a quick reference listing of the instructions available in the basic JASP
instruction set.

The mnemonic and description is listed for each opcode in the instruction set.

00 ADD #data,A Add to reg. A an immediate oper.
01 ADD #data,B Add to reg. B an immediate oper.
02 ADD addr,A Add to reg. A from a direct addr.
03 ADD addr,B Add to reg. B from a direct addr.
04 ADD (addr),A Add to reg. A from an indirect addr.
05 ADD (addr),B Add to reg. B from an indirect addr.
06 ADD B,A Add B reg. to contents of A reg.
07 ADD A,B Add A reg. to contents of B reg.
08 ADD (B),A Add B reg. indirect oper. to A reg.
09 ADD (A),B Add A reg. indirect oper. to B reg.
0A ADD B+addr,A Add to reg. A from an indexed addr. (index in B)
0B ADD A+addr,B Add to reg. B from an indexed addr. (index in A)
10 ADC #data,A Add with carry to reg. A an immediate oper.
11 ADC #data,B Add with carry to reg. B an immediate oper.
12 ADC addr,A Add with carry to reg. A from a direct addr.
13 ADC addr,B Add with carry to reg. B from a direct addr.
14 ADC (addr),A Add with carry to reg. A from an indirect addr.
15 ADC (addr),B Add with carry to reg. B from an indirect addr.
16 ADC B,A Add with carry to A reg. from B reg.
17 ADC A,B Add with carry to B reg. from A reg.
18 ADC (B),A Add with carry to B reg. a reg. indirect oper.
19 ADC (A),B Add with carry to B reg. a reg. indirect oper.
1A ADC B+addr,A Add with carry to reg. A an indexed oper. (index in B)
1B ADC A+addr,B Add with carry to reg. B an indexed oper. (index in A)
20 SUB #data,A Subtract an immediate oper. from A reg
21 SUB #data,B Subtract an immediate oper. from B reg
22 SUB addr,A Subtract from reg. A a direct oper.

351



www.manaraa.com

Fundamentals of Computer Architecture

23 SUB addr,B Subtract from reg. B a direct oper.
24 SUB (addr),A Subtract from reg. A an indirect oper.
25 SUB (addr),B Subtract from reg. B an indirect oper.
26 SUB B,A Subtract from reg. A the contents of reg. B
27 SUB A,B Subtract from reg. B the contents of reg. A
28 SUB (B),A Subtract from reg. A a reg. indirect oper.
29 SUB (A),B Subtract from reg. B a reg. indirect oper.
2A SUB B+addr,A Subtract an indexed oper. from the reg. A (index in B)
2B SUB A+addr,B Subtract an indexed oper. from the reg. B (index in A)
32 SHL addr Shift left a memory direct oper.
34 SHL (addr) Shift left a memory indirect oper.
36 SHL A Shift left reg. A
37 SHL B Shift left reg. B
38 SHL (A) Shift left a reg. indirect oper., addr. in A
39 SHL (B) Shift left a reg. indirect oper., addr. in B
3A SHL A+addr Shift left an indexed oper. (index in A)
3B SHL B+addr Shift left an indexed oper. (index in B)
42 SHR addr Shift right a direct oper.
44 SHR (addr) Shift right a memory indirect oper.
46 SHR A Shift right the contents of reg. A
47 SHR B Shift right the contents of reg. B
48 SHR (A) Shift right a reg. indirect oper.
49 SHR (B) Shift right a reg. indirect oper.
4A SHR A+addr Shift right a memory indexed oper. (index in A)
4B SHR B+addr Shift right a memory indexed oper. (Index in B)
50 AND #data,A AND operation on A reg and an immediate oper.
51 AND #data,B AND operation on B reg and an immediate oper.
52 AND addr,A AND operation on A and a direct oper.
53 AND addr,B AND operation on B and a direct oper.
54 AND (addr),A AND operation on A and an indirect oper.
55 AND (addr),B AND operation on B and an indirect oper.
56 AND B,A AND on A and B, result in A
57 AND A,B AND on B and A, result in B
58 AND (B),A AND on A and a reg. indirect oper.
59 AND (A),B AND on B and a reg. indirect oper.
5A AND B+addr,A AND operation on A and an indexed oper.
5B AND A+addr,B AND operation on B and an indexed oper.
60 OR #data,A OR operation on A reg and an immediate oper.
61 OR #data,B OR operation on B reg and an immediate oper.
62 OR addr,A OR operation on A and a direct oper.
63 OR addr,B OR operation on B and a direct oper.
64 OR (addr),A OR operation on A and an indirect oper.
65 OR (addr),B OR operation on B and an indirect oper.
66 OR B,A OR on A and B, result in A
67 OR A,B OR on B and A, result in B
68 OR (B),A OR on A and a reg. indirect oper.
69 OR (A),B OR on B and a reg. indirect oper.
6A OR B+addr,A OR operation on A and an indexed oper.
6B OR A+addr,B OR operation on B and an indexed oper.
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72 NOT addr NOT operation on a direct oper.
74 NOT (addr) NOT operation on an indirect oper.
76 NOT A NOT operation on A reg.
77 NOT B NOT operation on B reg.
78 NOT (A) NOT on a reg. indirect oper. (address in A)
79 NOT (B) NOT on a reg. indirect oper. (address in B)
7A NOT A+addr NOT on an indexed oper. (index in A)
7B NOT B+addr NOT on an indexed oper. (index in B)
7C SWAP A Swap A register lo and hi bytes
7D SWAP B Swap B register lo and hi bytes
80 CMP #data,A Compare an immediate oper. with A reg
81 CMP #data,B Compare an immediate oper. with B reg
82 CMP addr,A Compare a direct oper. with A reg.
83 CMP addr,B Compare a direct oper. with B reg.
84 CMP (addr),A Compare an indirect oper. with A reg.
85 CMP (addr),B Compare an indirect oper. with B reg.
86 CMP B,A Compare A and B reg.
87 CMP A,B Compare B and A reg.
88 CMP (B),A Compare A with a reg. indirect oper.
89 CMP (A),B Compare B with a reg. indirect oper.
8A CMP B+addr,A Compare with A an indexed oper.
8B CMP A+addr,B Compare with B an indexed oper.
8C PUSH A Push A onto the stack
8D PUSH B Push B onto the stack
8E POP A Pop A from the stack
8F POP B Pop B from the stack
90 MOVE #data,A Move an immediate oper. into A
91 MOVE #data,B Move an immediate oper. into B
92 MOVE addr,A Load reg. A from a direct addr.
93 MOVE addr,B Load reg. B from a direct addr.
94 MOVE (addr),A Load reg. A from an indirect addr.
95 MOVE (addr),B Load reg. B from an indirect addr.
96 MOVE B,A Move B reg. to A reg.
97 MOVE A,B Move A reg. to B reg.
98 MOVE (B),A Load A reg. with a reg. indirect oper.
99 MOVE (A),B Load B reg. with a reg. indirect oper.
9A MOVE B+addr,A Load A reg from an indexed addr. (index in B)
9B MOVE A+addr,B Load B reg from an indexed addr. (index in A)
A2 MOVE A,addr Store the A reg. in memory at a direct addr.
A3 MOVE B,addr Store the B reg. in memory at a direct addr.
A4 MOVE A,(addr) Store reg. A at a mem. indirect addr.
A5 MOVE B,(addr) Store reg. B at a mem. indirect addr.
A6 MOVE #data,SP Move an immediate oper. into SP
A7 MOVE addr,SP Load reg. SP from a direct addr.
A8 MOVE A,(B) Store A reg. at an addr. held in B
A9 MOVE B,(A) Store B reg. at an addr. held in A
AA MOVE A,B+addr Store A reg. at an indexed addr. (index in B)
AB MOVE B,A+addr Store B reg. at an indexed addr. (index in A)
AC MOVE (addr),SP Load reg. SP from an indirect addr.
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AD MOVE A,SP Move A reg. to SP reg.
AE MOVE B,SP Move B reg. to SP reg.
B0 BCC #dis Branch on carry clear to a PC relative addr.
B1 BCS #dis Branch on carry set to a PC relative addr.
B2 BCC addr Branch to a direct addr. if carry flag clear (C=0)
B3 BCS addr Branch to a direct addr. if carry flag set (C=1)
B4 BCC (addr) Branch to an indirect addr. if carry flag is clear
B5 BCS (addr) Branch to an indirect addr. if carry flag is set
B8 BPL #dis Branch on negative clear to a PC relative addr.
B9 BMI #dis Branch on negative set to a PC relative addr.
BA BPL addr Branch to a direct addr. if negative flag clear (N=0)
BB BMI addr Branch to a direct addr. if negative flag set (N=1)
BC BPL (addr) Branch to an indirect addr. if negative flag is clear
BD BMI (addr) Branch to an indirect addr. if negative flag is set
C0 BNE #dis Branch on zero clear to a PC relative addr.
C1 BEQ #dis Branch on zero set to a PC relative addr.
C2 BNE addr Branch to a direct addr. if zero flag clear (Z=0)
C3 BEQ addr Branch to a direct addr. if zero flag set (Z=1)
C4 BNE (addr) Branch to an indirect addr. if zero flag is clear
C5 BEQ (addr) Branch to an indirect addr. if zero flag is set
C8 BVC #dis Branch on no overflow to a PC relative addr.
C9 BVS #dis Branch on overflow to a PC relative addr.
CA BVC addr Branch to a direct addr. if overflow flag clear (V=0)
CB BVS addr Branch to a direct addr. if overflow flag set (V=1)
CC BVC (addr) Branch to an indirect addr. if overflow flag is clear
CD BVS (addr) Branch to an indirect addr. if overflow flag is set
D0 JSR addr Jump to subroutine at a direct address
D1 JSR (addr) Jump to subroutine at an indirect address
D2 JSR A Jump to subroutine at an addr. held in the A reg.
D3 JSR B Jump to subroutine at an addr. held in the B reg.
D4 JSR (A) Jump to subroutine at an indirect addr. held in the A reg.
D5 JSR (B) Jump to subroutine at an indirect addr. held in the B reg.
D6 JSR A+addr Jump to subroutine at an indexed addr. (index in A)
D7 JSR B+addr Jump to subroutine at an indexed addr. (index in B)
D8 JSR #dis Jump to subroutine at a PC relative address
E0 JMP addr Jump to a direct addr.
E1 JMP (addr) Jump to an indirect addr.
E2 JMP A Jump to an addr. held in the A reg.
E3 JMP B Jump to an addr. held in the B reg.
E4 JMP (A) Jump to a reg. indirect addr.
E5 JMP (B) Jump to a reg. indirect addr.
E6 JMP A+addr Jump to an indexed addr. (index in A)
E7 JMP B+addr Jump to an indexed addr. (index in B)
E8 JMP #dis Jump to a PC relative address
F0 HALT Halt processor
F1 RTS Return from subroutine
F2 NOP No operation
F3 INTE Enable interrupts
F4 INTD Disable interrupts
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FA TRAP #data Software interrupt mechanism
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The Basic Instruction
Set

This is a complete reference to the basic instruction set that ships with the
JASP toolkit. It details the microcode lists for each opcode.

* A basic instruction set for the JASP architecture.
*
* Originally based on an instruction set
* by William Henderson.
*
* This instruction set is purely for use in
* memory locations $00 to $FF. Many instructions
* make use of movements from the ir(operand),
* and so cannot address memory locations above $FF.
*
* All instructions are one word, the hi-byte
* of each is the opcode.
*
* Revision : 2.0.7
* Author : Mark Burrell
* Date : 16-FEB-2003
*
*
Fetch
* fetch cycle definition
MAR<-[PC]
INC<-[PC]
PC<-[INC]
MDR<-[M[MAR]]
IR<-[MDR]
CU<-[IR(opcode)]

Interrupt
* interrupt routine
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PSR(I)=0 interrupt flag = 0
MAR<-[SP] } save PSR
MDR<-[PSR] } on the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
PSR(E)=0 interrupt enable flag = 0
ALUy<-[JUMPERS(IntBase)] }
ALUx<-[PSR(IntVec)] } build the vector address
ALUr=[ALUx]+[ALUy] }
MAR<-[ALUr] } obtain the handler address
MDR<-[M[MAR]] }
PC<-[MDR] load address of handler into PC

Opcode fa
Mnemonic "TRAP #data"
Description "Software interrupt mechanism"
* programmably trigger the interrupt routine
*
* The #data value is masked with %00000111
* to produce the interrupt number
*
PSR(IntVec)<-[IR(operand)] } Load the PSR with the Interrupt Vector
PSR(I)=1 } Fire the interrupt

Opcode 00
* data 00 to FF, sign extended
Mnemonic "ADD #data,A"
Description "Add to reg. A an immediate oper."
ALUx<-[A]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 01
* data 00 to FF, sign extended
Mnemonic "ADD #data,B"
Description "Add to reg. B an immediate oper."
ALUx<-[B]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
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B<-[ALUr]

Opcode 02
* addr 00 to FF
Mnemonic "ADD addr,A"
Description "Add to reg. A from a direct addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 03
* addr 00 to FF
Mnemonic "ADD addr,B"
Description "Add to reg. B from a direct addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 04
* addr and (addr) 00 to FF
Mnemonic "ADD (addr),A"
Description "Add to reg. A from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 05
* addr and (addr) 00 to FF
Mnemonic "ADD (addr),B"
Description "Add to reg. B from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
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ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 06
Mnemonic "ADD B,A"
Description "Add B reg. to contents of A reg."
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 07
Mnemonic "ADD A,B"
Description "Add A reg. to contents of B reg."
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 08
Mnemonic "ADD (B),A"
Description "Add B reg. indirect oper. to A reg."
MAR<-[B]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 09
Mnemonic "ADD (A),B"
Description "Add A reg. indirect oper. to B reg."
MAR<-[A]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 0a
* addr 00 to FF
Mnemonic "ADD B+addr,A"
Description "Add to reg. A from an indexed addr. (index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]

360



www.manaraa.com

The Basic Instruction Set

ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 0b
* addr 00 to FF
Mnemonic "ADD A+addr,B"
Description "Add to reg. B from an indexed addr. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 10
* data 00 to FF, sign extended
Mnemonic "ADC #data,A"
Description "Add with carry to reg. A an immediate oper."
ALUx<-[A]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 11
* data 00 to FF, sign extended
Mnemonic "ADC #data,B"
Description "Add with carry to reg. B an immediate oper."
ALUx<-[B]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 12
* addr 00 to FF
Mnemonic "ADC addr,A"
Description "Add with carry to reg. A from a direct addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 13
* addr 00 to FF
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Mnemonic "ADC addr,B"
Description "Add with carry to reg. B from a direct addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 14
* addr and (addr) 00 to FF
Mnemonic "ADC (addr),A"
Description "Add with carry to reg. A from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 15
* addr and (addr) 00 to FF
Mnemonic "ADC (addr),B"
Description "Add with carry to reg. B from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 16
Mnemonic "ADC B,A"
Description "Add with carry to A reg. from B reg."
ALUy<-[B]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 17
Mnemonic "ADC A,B"
Description "Add with carry to B reg. from A reg."
ALUy<-[A]
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ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 18
Mnemonic "ADC (B),A"
Description "Add with carry to B reg. a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 19
Mnemonic "ADC (A),B"
Description "Add with carry to B reg. a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 1a
* addr 00 to FF
Mnemonic "ADC B+addr,A"
Description "Add with carry to reg. A an indexed oper. (index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 1b
* addr 00 to FF
Mnemonic "ADC A+addr,B"
Description "Add with carry to reg. B an indexed oper. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]

363



www.manaraa.com

Fundamentals of Computer Architecture

ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 20
* data 00 to FF, sign extended
Mnemonic "SUB #data,A"
Description "Subtract an immediate oper. from A reg"
ALUx<-[A]
ALUy<-[IR(operand)]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 21
* data 00 to FF, sign extended
Mnemonic "SUB #data,B"
Description "Subtract an immediate oper. from B reg"
ALUx<-[B]
ALUy<-[IR(operand)]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 22
* addr 00 to FF
Mnemonic "SUB addr,A"
Description "Subtract from reg. A a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 23
* addr 00 to FF
Mnemonic "SUB addr,B"
Description "Subtract from reg. B a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 24
* addr and (addr) 00 to FF
Mnemonic "SUB (addr),A"
Description "Subtract from reg. A an indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
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IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 25
* addr and (addr) 00 to FF
Mnemonic "SUB (addr),B"
Description "Subtract from reg. B an indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 26
Mnemonic "SUB B,A"
Description "Subtract from reg. A the contents of reg. B"
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 27
Mnemonic "SUB A,B"
Description "Subtract from reg. B the contents of reg. A"
ALUx<-[B]
ALUy<-[A]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 28
Mnemonic "SUB (B),A"
Description "Subtract from reg. A a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 29
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Mnemonic "SUB (A),B"
Description "Subtract from reg. B a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 2a
* addr 00 to FF
Mnemonic "SUB B+addr,A"
Description "Subtract an indexed oper. from the reg. A (index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 2b
* addr 00 to FF
Mnemonic "SUB A+addr,B"
Description "Subtract an indexed oper. from the reg. B (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 32
* addr 00 to FF
Mnemonic "SHL addr"
Description "Shift left a memory direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 34
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* addr and (addr) 00 to FF
Mnemonic "SHL (addr)"
Description "Shift left a memory indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 36
Mnemonic "SHL A"
Description "Shift left reg. A"
ALUx<-[A]
ALUr=[ALUx]<<1
A<-[ALUr]

Opcode 37
Mnemonic "SHL B"
Description "Shift left reg. B"
ALUx<-[B]
ALUr=[ALUx]<<1
B<-[ALUr]

Opcode 38
Mnemonic "SHL (A)"
Description "Shift left a reg. indirect oper., addr. in A"
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 39
Mnemonic "SHL (B)"
Description "Shift left a reg. indirect oper., addr. in B"
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 3a
* addr 00 to FF
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Mnemonic "SHL A+addr"
Description "Shift left an indexed oper. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 3b
* addr 00 to FF
Mnemonic "SHL B+addr"
Description "Shift left an indexed oper. (index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 42
* addr 00 to FF
Mnemonic "SHR addr"
Description "Shift right a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 44
* addr and (addr) 00 to FF
Mnemonic "SHR (addr)"
Description "Shift right a memory indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
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M[MAR]<-[MDR]

Opcode 46
Mnemonic "SHR A"
Description "Shift right the contents of reg. A"
ALUx<-[A]
ALUr=[ALUx]>>1
A<-[ALUr]

Opcode 47
Mnemonic "SHR B"
Description "Shift right the contents of reg. B"
ALUx<-[B]
ALUr=[ALUx]>>1
B<-[ALUr]

Opcode 48
Mnemonic "SHR (A)"
Description "Shift right a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 49
Mnemonic "SHR (B)"
Description "Shift right a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 4a
* addr 00 to FF
Mnemonic "SHR A+addr"
Description "Shift right a memory indexed oper. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]
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Opcode 4b
* addr 00 to FF
Mnemonic "SHR B+addr"
Description "Shift right a memory indexed oper. (Index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 50
* data 00 to FF, sign extended
Mnemonic "AND #data,A"
Description "AND operation on A reg and an immediate oper."
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 51
* data 00 to FF, sign extended
Mnemonic "AND #data,B"
Description "AND operation on B reg and an immediate oper."
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 52
* addr 00 to FF
Mnemonic "AND addr,A"
Description "AND operation on A and a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 53
* addr 00 to FF
Mnemonic "AND addr,B"
Description "AND operation on B and a direct oper."
MAR<-[IR(operand)]
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MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 54
* addr and (addr) 00 to FF
Mnemonic "AND (addr),A"
Description "AND operation on A and an indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 55
* addr and (addr) 00 to FF
Mnemonic "AND (addr),B"
Description "AND operation on B and an indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 56
Mnemonic "AND B,A"
Description "AND on A and B, result in A"
ALUy<-[B]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 57
Mnemonic "AND A,B"
Description "AND on B and A, result in B"
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]
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Opcode 58
Mnemonic "AND (B),A"
Description "AND on A and a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 59
Mnemonic "AND (A),B"
Description "AND on B and a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 5a
* addr 00 to FF
Mnemonic "AND B+addr,A"
Description "AND operation on A and an indexed oper."
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 5b
* addr 00 to FF
Mnemonic "AND A+addr,B"
Description "AND operation on B and an indexed oper."
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]
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Opcode 60
* data 00 to FF, sign extended
Mnemonic "OR #data,A"
Description "OR operation on A reg and an immediate oper."
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 61
* data 00 to FF, sign extended
Mnemonic "OR #data,B"
Description "OR operation on B reg and an immediate oper."
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 62
* addr 00 to FF
Mnemonic "OR addr,A"
Description "OR operation on A and a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 63
* addr 00 to FF
Mnemonic "OR addr,B"
Description "OR operation on B and a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 64
* addr and (addr) 00 to FF
Mnemonic "OR (addr),A"
Description "OR operation on A and an indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
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ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 65
* addr and (addr) 00 to FF
Mnemonic "OR (addr),B"
Description "OR operation on B and an indirect oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 66
Mnemonic "OR B,A"
Description "OR on A and B, result in A"
ALUy<-[B]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 67
Mnemonic "OR A,B"
Description "OR on B and A, result in B"
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 68
Mnemonic "OR (B),A"
Description "OR on A and a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 69
Mnemonic "OR (A),B"
Description "OR on B and a reg. indirect oper."
MAR<-[A]
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MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 6a
* addr 00 to FF
Mnemonic "OR B+addr,A"
Description "OR operation on A and an indexed oper."
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 6b
* addr 00 to FF
Mnemonic "OR A+addr,B"
Description "OR operation on B and an indexed oper."
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 72
* addr 00 to FF
Mnemonic "NOT addr"
Description "NOT operation on a direct oper."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 74
* addr and (addr) 00 to FF
Mnemonic "NOT (addr)"
Description "NOT operation on an indirect oper."
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MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 76
Mnemonic "NOT A"
Description "NOT operation on A reg."
ALUx<-[A]
ALUr=~[ALUx]
A<-[ALUr]

Opcode 77
Mnemonic "NOT B"
Description "NOT operation on B reg."
ALUx<-[B]
ALUr=~[ALUx]
B<-[ALUr]

Opcode 78
Mnemonic "NOT (A)"
Description "NOT on a reg. indirect oper. (address in A)"
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 79
Mnemonic "NOT (B)"
Description "NOT on a reg. indirect oper. (address in B)"
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 7a
* addr 00 to FF
Mnemonic "NOT A+addr"
Description "NOT on an indexed oper. (index in A)"
ALUx<-[A]
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ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 7b
* addr 00 to FF
Mnemonic "NOT B+addr"
Description "NOT on an indexed oper. (index in B)"
ALUx<-[B]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 7c
Mnemonic "SWAP A"
Description "Swap A register lo and hi bytes"
ALUx<-[A]
ALUr(7:0)=[ALUx(15:8)];ALUr(15:8)=[ALUx(7:0)]
A<-[ALUr]

Opcode 7d
Mnemonic "SWAP B"
Description "Swap B register lo and hi bytes"
ALUx<-[B]
ALUr(7:0)=[ALUx(15:8)];ALUr(15:8)=[ALUx(7:0)]
B<-[ALUr]

Opcode 80
* data 00 to FF, sign extended
Mnemonic "CMP #data,A"
Description "Compare an immediate oper. with A reg"
ALUx<-[A]
ALUy<-[IR(operand)]
ALUr=[ALUx]-[ALUy]

Opcode 81
* data 00 to FF, sign extended
Mnemonic "CMP #data,B"
Description "Compare an immediate oper. with B reg"
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ALUx<-[B]
ALUy<-[IR(operand)]
ALUr=[ALUx]-[ALUy]

Opcode 82
* addr 00 to FF
Mnemonic "CMP addr,A"
Description "Compare a direct oper. with A reg."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]-[ALUy]

Opcode 83
* addr 00 to FF
Mnemonic "CMP addr,B"
Description "Compare a direct oper. with B reg."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]-[ALUy]

Opcode 84
* addr and (addr) 00 to FF
Mnemonic "CMP (addr),A"
Description "Compare an indirect oper. with A reg."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]-[ALUy]

Opcode 85
* addr and (addr) 00 to FF
Mnemonic "CMP (addr),B"
Description "Compare an indirect oper. with B reg."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]-[ALUy]
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Opcode 86
Mnemonic "CMP B,A"
Description "Compare A and B reg."
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]-[ALUy]

Opcode 87
Mnemonic "CMP A,B"
Description "Compare B and A reg."
ALUx<-[B]
ALUy<-[A]
ALUr=[ALUx]-[ALUy]

Opcode 88
Mnemonic "CMP (B),A"
Description "Compare A with a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 89
Mnemonic "CMP (A),B"
Description "Compare B with a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 8a
* addr 00 to FF
Mnemonic "CMP B+addr,A"
Description "Compare with A an indexed oper."
ALUx<-[B]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 8b
* addr 00 to FF
Mnemonic "CMP A+addr,B"
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Description "Compare with B an indexed oper."
ALUx<-[A]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 8c
Mnemonic "PUSH A"
Description "Push A onto the stack"
MAR<-[SP]
MDR<-[A]
M[MAR]<-[MDR]
ALUx<-[SP]
ALUr=[ALUx]-1
SP<-[ALUr]

Opcode 8d
Mnemonic "PUSH B"
Description "Push B onto the stack"
MAR<-[SP]
MDR<-[B]
M[MAR]<-[MDR]
ALUx<-[SP]
ALUr=[ALUx]-1
SP<-[ALUr]

Opcode 8e
Mnemonic "POP A"
Description "Pop A from the stack"
ALUx<-[SP]
ALUr=[ALUx]+1
SP<-[ALUr]
MAR<-[SP]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 8f
Mnemonic "POP B"
Description "Pop B from the stack"
ALUx<-[SP]
ALUr=[ALUx]+1
SP<-[ALUr]
MAR<-[SP]
MDR<-[M[MAR]]
B<-[MDR]

380



www.manaraa.com

The Basic Instruction Set

Opcode 90
* data 00 to FF
Mnemonic "MOVE #data,A"
Description "Move an immediate oper. into A"
A<-[IR(operand)]

Opcode 91
* data 00 to FF
Mnemonic "MOVE #data,B"
Description "Move an immediate oper. into B"
B<-[IR(operand)]

Opcode 92
* addr 00 to FF
Mnemonic "MOVE addr,A"
Description "Load reg. A from a direct addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 93
* addr 00 to FF
Mnemonic "MOVE addr,B"
Description "Load reg. B from a direct addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
B<-[MDR]

Opcode 94
* addr and (addr) 00 to FF
Mnemonic "MOVE (addr),A"
Description "Load reg. A from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 95
* addr and (addr) 00 to FF
Mnemonic "MOVE (addr),B"
Description "Load reg. B from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
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B<-[MDR]

Opcode 96
Mnemonic "MOVE B,A"
Description "Move B reg. to A reg."
MDR<-[B]
A<-[MDR]

Opcode 97
Mnemonic "MOVE A,B"
Description "Move A reg. to B reg."
MDR<-[A]
B<-[MDR]

Opcode 98
Mnemonic "MOVE (B),A"
Description "Load A reg. with a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 99
Mnemonic "MOVE (A),B"
Description "Load B reg. with a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
B<-[MDR]

Opcode 9a
* addr 00 to FF
Mnemonic "MOVE B+addr,A"
Description "Load A reg from an indexed addr. (index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 9b
* addr 00 to FF
Mnemonic "MOVE A+addr,B"
Description "Load B reg from an indexed addr. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
B<-[MDR]
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Opcode a2
* addr 00 to FF
Mnemonic "MOVE A,addr"
Description "Store the A reg. in memory at a direct addr."
MAR<-[IR(operand)]
MDR<-[A]
M[MAR]<-[MDR]

Opcode a3
* addr 00 to FF
Mnemonic "MOVE B,addr"
Description "Store the B reg. in memory at a direct addr."
MAR<-[IR(operand)]
MDR<-[B]
M[MAR]<-[MDR]

Opcode a4
* addr and (addr) 00 to FF
Mnemonic "MOVE A,(addr)"
Description "Store reg. A at a mem. indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[A]
M[MAR]<-[MDR]

Opcode a5
* addr and (addr) 00 to FF
Mnemonic "MOVE B,(addr)"
Description "Store reg. B at a mem. indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[B]
M[MAR]<-[MDR]

Opcode a6
* data 00 to FF
Mnemonic "MOVE #data,SP"
Description "Move an immediate oper. into SP"
SP<-[IR(operand)]

Opcode a7
* addr 00 to FF
Mnemonic "MOVE addr,SP"
Description "Load reg. SP from a direct addr."
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MAR<-[IR(operand)]
MDR<-[M[MAR]]
SP<-[MDR]

Opcode a8
Mnemonic "MOVE A,(B)"
Description "Store A reg. at an addr. held in B"
MAR<-[B]
MDR<-[A]
M[MAR]<-[MDR]

Opcode a9
Mnemonic "MOVE B,(A)"
Description "Store B reg. at an addr. held in A"
MAR<-[A]
MDR<-[B]
M[MAR]<-[MDR]

Opcode aa
* addr 00 to FF
Mnemonic "MOVE A,B+addr"
Description "Store A reg. at an indexed addr. (index in B)"
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[A]
M[MAR]<-[MDR]

Opcode ab
* addr 00 to FF
Mnemonic "MOVE B,A+addr"
Description "Store B reg. at an indexed addr. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[B]
M[MAR]<-[MDR]

Opcode ac
* addr and (addr) 00 to FF
Mnemonic "MOVE (addr),SP"
Description "Load reg. SP from an indirect addr."
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
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SP<-[MDR]

Opcode ad
Mnemonic "MOVE A,SP"
Description "Move A reg. to SP reg."
MDR<-[A]
SP<-[MDR]

Opcode ae
Mnemonic "MOVE B,SP"
Description "Move B reg. to SP reg."
MDR<-[B]
SP<-[MDR]

Opcode b0
* dis 00 to FF, sign extended
Mnemonic "BCC #dis"
Description "Branch on carry clear to a PC relative addr."
if(PSR(c)==0)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode b1
* dis 00 to FF, sign extended
Mnemonic "BCS #dis"
Description "Branch on carry set to a PC relative addr."
if(PSR(c)==1)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode b2
* addr 00 to FF
Mnemonic "BCC addr"
Description "Branch to a direct addr. if carry flag clear (C=0)"
if(PSR(c)==0)
PC<-[IR(operand)]

Opcode b3
* addr 00 to FF
Mnemonic "BCS addr"
Description "Branch to a direct addr. if carry flag set (C=1)"
if(PSR(c)==1)
PC<-[IR(operand)]

Opcode b4
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* addr and (addr) 00 to FF
Mnemonic "BCC (addr)"
Description "Branch to an indirect addr. if carry flag is clear"
if(PSR(c)==0)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode b5
* addr and (addr) 00 to FF
Mnemonic "BCS (addr)"
Description "Branch to an indirect addr. if carry flag is set"
if(PSR(c)==1)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode b8
* dis 00 to FF, sign extended
Mnemonic "BPL #dis"
Description "Branch on negative clear to a PC relative addr."
if(PSR(n)==0)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode b9
* dis 00 to FF, sign extended
Mnemonic "BMI #dis"
Description "Branch on negative set to a PC relative addr."
if(PSR(n)==1)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode ba
* addr 00 to FF
Mnemonic "BPL addr"
Description "Branch to a direct addr. if negative flag clear (N=0)"
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if(PSR(n)==0)
PC<-[IR(operand)]

Opcode bb
* addr 00 to FF
Mnemonic "BMI addr"
Description "Branch to a direct addr. if negative flag set (N=1)"
if(PSR(n)==1)
PC<-[IR(operand)]

Opcode bc
* addr and (addr) 00 to FF
Mnemonic "BPL (addr)"
Description "Branch to an indirect addr. if negative flag is clear"
if(PSR(n)==0)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode bd
* addr and (addr) 00 to FF
Mnemonic "BMI (addr)"
Description "Branch to an indirect addr. if negative flag is set"
if(PSR(n)==1)
MAR<-[IR(operand)]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode c0
* dis 00 to FF, sign extended
Mnemonic "BNE #dis"
Description "Branch on zero clear to a PC relative addr."
if(PSR(z)==0)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode c1
* dis 00 to FF, sign extended
Mnemonic "BEQ #dis"
Description "Branch on zero set to a PC relative addr."
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if(PSR(z)==1)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode c2
* addr 00 to FF
Mnemonic "BNE addr"
Description "Branch to a direct addr. if zero flag clear (Z=0)"
if(PSR(z)==0)
PC<-[IR(operand)]

Opcode c3
* addr 00 to FF
Mnemonic "BEQ addr"
Description "Branch to a direct addr. if zero flag set (Z=1)"
if(PSR(z)==1)
PC<-[IR(operand)]

Opcode c4
* addr and (addr) 00 to FF
Mnemonic "BNE (addr)"
Description "Branch to an indirect addr. if zero flag is clear"
if(PSR(z)==0)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode c5
* addr and (addr) 00 to FF
Mnemonic "BEQ (addr)"
Description "Branch to an indirect addr. if zero flag is set"
if(PSR(z)==1)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode c8
* dis 00 to FF, sign extended
Mnemonic "BVC #dis"
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Description "Branch on no overflow to a PC relative addr."
if(PSR(v)==0)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode c9
Mnemonic "BVS #dis"
Description "Branch on overflow to a PC relative addr."
if(PSR(v)==1)
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode ca
Mnemonic "BVC addr"
Description "Branch to a direct addr. if overflow flag clear (V=0)"
if(PSR(v)==0)
PC<-[IR(operand)]

Opcode cb
Mnemonic "BVS addr"
Description "Branch to a direct addr. if overflow flag set (V=1)"
if(PSR(v)==1)
PC<-[IR(operand)]

Opcode cc
* addr and (addr) 00 to FF
Mnemonic "BVC (addr)"
Description "Branch to an indirect addr. if overflow flag is clear"
if(PSR(v)==0)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode cd
* addr and (addr) 00 to FF
Mnemonic "BVS (addr)"
Description "Branch to an indirect addr. if overflow flag is set"
if(PSR(v)==1)
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
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MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode d0
* addr 00 to FF
Mnemonic "JSR addr"
Description "Jump to subroutine at a direct address"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
PC<-[IR(operand)]

Opcode d1
* addr and (addr) 00 to FF
Mnemonic "JSR (addr)"
Description "Jump to subroutine at an indirect address"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MAR<-[IR(operand)]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d2
Mnemonic "JSR A"
Description "Jump to subroutine at an addr. held in the A reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MDR<-[A]
PC<-[MDR]

Opcode d3
Mnemonic "JSR B"
Description "Jump to subroutine at an addr. held in the B reg."
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ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
PC<-[B]

Opcode d4
Mnemonic "JSR (A)"
Description "Jump to subroutine at an indirect addr. held in the A reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MAR<-[A]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d5
Mnemonic "JSR (B)"
Description "Jump to subroutine at an indirect addr. held in the B reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MAR<-[B]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d6
* addr 00 to FF
Mnemonic "JSR A+addr"
Description "Jump to subroutine at an indexed addr. (index in A)"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUy<-[IR(operand)]
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ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d7
* addr 00 to FF
Mnemonic "JSR B+addr"
Description "Jump to subroutine at an indexed addr. (index in B)"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUy<-[IR(operand)]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d8
Mnemonic "JSR #dis"
Description "Jump to subroutine at a PC relative address"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode e0
* addr 00 to FF
Mnemonic "JMP addr"
Description "Jump to a direct addr."
PC<-[IR(operand)]

Opcode e1
* addr and (addr) 00 to FF
Mnemonic "JMP (addr)"
Description "Jump to an indirect addr."
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MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[IR(operand)]
MDR<-[M[MAR]]
IR<-[MDR]
PC<-[IR(operand)]

Opcode e2
Mnemonic "JMP A"
Description "Jump to an addr. held in the A reg."
MDR<-[A]
PC<-[MDR]

Opcode e3
Mnemonic "JMP B"
Description "Jump to an addr. held in the B reg."
PC<-[B]

Opcode e4
Mnemonic "JMP (A)"
Description "Jump to a reg. indirect addr."
MAR<-[A]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e5
Mnemonic "JMP (B)"
Description "Jump to a reg. indirect addr."
MAR<-[B]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e6
* addr 00 to FF
Mnemonic "JMP A+addr"
Description "Jump to an indexed addr. (index in A)"
ALUy<-[IR(operand)]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e7
* addr 00 to FF
Mnemonic "JMP B+addr"
Description "Jump to an indexed addr. (index in B)"
ALUy<-[IR(operand)]
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ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e8
Mnemonic "JMP #dis"
Description "Jump to a PC relative address"
ALUx<-[PC]
ALUy<-[IR(operand)]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode f0
Mnemonic "HALT"
Description "Halt processor"
HALT

Opcode f1
Mnemonic "RTS"
Description "Return from subroutine"
ALUx<-[SP] } increment
ALUr=[ALUx]+1 } SP
SP<-[ALUr] }
MAR<-[SP] } recover PC
MDR<-[M[MAR]] } from the stack
PC<-[MDR] }

Opcode f2
Mnemonic "NOP"
Description "No operation"
NOP

Opcode ff
Mnemonic "RTI"
Description "Return from interrupt"
*
* Recover PC and PSR from the stack
*
ALUx<-[SP] } increment
ALUr=[ALUx]+1 } SP
SP<-[ALUr] }
MAR<-[SP] } recover PC
MDR<-[M[MAR]] } from the stack
PC<-[MDR] }
ALUx<-[SP] } increment
ALUr=[ALUx]+1 } SP
SP<-[ALUr] }
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MAR<-[SP] } recover PSR
MDR<-[M[MAR]] } from the stack
PSR<-[MDR] }

Opcode f3
Mnemonic "INTE"
Description "Enable interrupts"
PSR(E)=1

Opcode f4
Mnemonic "INTD"
Description "Disable interrupts"
PSR(E)=0
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D

The Advanced
Instruction Set Quick
Reference

This is a quick reference listing of the instructions available in the advanced
JASP instruction set.

The mnemonic and description is listed for each opcode in the instruction set.

00 ADD #dataword,A Add to reg. A an immediate oper.
01 ADD #dataword,B Add to reg. B an immediate oper.
02 ADD addrword,A Add to reg. A from a direct addr
03 ADD addrword,B Add to reg. B from a direct addr
04 ADD (addrword),A Add to reg. A from an indirect addr
05 ADD (addrword),B Add to reg. B from an indirect addr.
06 ADD B,A Add B reg. to contents of A reg.
07 ADD A,B Add A reg. to contents of B reg.
08 ADD (B),A Add B reg. indirect oper. to A reg.
09 ADD (A),B Add A reg. indirect oper. to B reg.
0A ADD B+addrword,A Add to reg. A from an indexed addr (index in B)
0B ADD A+addrword,B Add to reg. B from an indexed addr (index in A)
10 ADC #dataword,A Add with carry to reg. A an immediate oper.
11 ADC #dataword,B Add with carry to reg. B an immediate oper.
12 ADC addrword,A Add with carry to reg. A from a direct addr
13 ADC addrword,B Add with carry to reg. B from a direct addr
14 ADC (addrword),A Add with carry to reg. A from an indirect addr
15 ADC (addrword),B Add with carry to reg. B from an indirect addr
16 ADC B,A Add with carry to A reg. from B reg.
17 ADC A,B Add with carry to B reg. from A reg.
18 ADC (B),A Add with carry to B reg. a reg. indirect oper.
19 ADC (A),B Add with carry to B reg. a reg. indirect oper.
1A ADC B+addrword,A Add with carry to reg. A an indexed oper. (index in B)
1B ADC A+addrword,B Add with carry to reg. B an indexed oper. (index in A)
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20 SUB #dataword,A Subtract an immediate oper. from A reg
21 SUB #dataword,B Subtract an immediate oper. from B reg
22 SUB addrword,A Subtract from reg. A a direct oper.
23 SUB addrword,B Subtract from reg. B a direct oper.
24 SUB (addrword),A Subtract from reg. A an indirect oper.
25 SUB (addrword),B Subtract from reg. B an indirect oper.
26 SUB B,A Subtract from reg. A the contents of reg. B
27 SUB A,B Subtract from reg. B the contents of reg. A
28 SUB (B),A Subtract from reg. A a reg. indirect oper.
29 SUB (A),B Subtract from reg. B a reg. indirect oper.
2A SUB B+addrword,A Subtract an indexed oper. from the reg. A (index in B)
2B SUB A+addrword,B Subtract an indexed oper. from the reg. B (index in A)
32 SHL addrword Shift left a memory direct oper.
34 SHL (addrword) Shift left a memory indirect oper.
36 SHL A Shift left reg. A
37 SHL B Shift left reg. B
38 SHL (A) Shift left a reg. indirect oper., addr in A
39 SHL (B) Shift left a reg. indirect oper., addr in B
3A SHL A+addrword Shift left an indexed oper. (index in A)
3B SHL B+addrword Shift left an indexed oper. (index in B)
42 SHR addrword Shift right a direct oper.
44 SHR (addrword) Shift right a memory indirect oper.
46 SHR A Shift right the contents of reg. A
47 SHR B Shift right the contents of reg. B
48 SHR (A) Shift right a reg. indirect oper.
49 SHR (B) Shift right a reg. indirect oper.
4A SHR A+addrword Shift right a memory indexed oper. (index in A)
4B SHR B+addrword Shift right a memory indexed oper. (Index in B)
50 AND #dataword,A AND operation on A reg and an immediate oper.
51 AND #dataword,B AND operation on B reg and an immediate oper.
52 AND addrword,A AND operation on A and a direct oper.
53 AND addrword,B AND operation on B and a direct oper.
54 AND (addrword),A AND operation on A and an indirect oper.
55 AND (addrword),B AND operation on B and an indirect oper.
56 AND B,A AND on A and B, result in A
57 AND A,B AND on B and A, result in B
58 AND (B),A AND on A and a reg. indirect oper.
59 AND (A),B AND on B and a reg. indirect oper.
5A AND B+addrword,A AND operation on A and an indexed oper.
5B AND A+addrword,B AND operation on B and an indexed oper.
60 OR #dataword,A OR operation on A reg and an immediate oper.
61 OR #dataword,B OR operation on B reg and an immediate oper.
62 OR addrword,A OR operation on A and a direct oper.
63 OR addrword,B OR operation on B and a direct oper.
64 OR (addrword),A OR operation on A and an indirect oper.
65 OR (addrword),B OR operation on B and an indirect oper.
66 OR B,A OR on A and B, result in A
67 OR A,B OR on B and A, result in B
68 OR (B),A OR on A and a reg. indirect oper.
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69 OR (A),B OR on B and a reg. indirect oper.
6A OR B+addrword,A OR operation on A and an indexed oper.
6B OR A+addrword,B OR operation on B and an indexed oper.
72 NOT addrword NOT operation on a direct oper.
74 NOT (addrword) NOT operation on an indirect oper.
76 NOT A NOT operation on A reg.
77 NOT B NOT operation on B reg.
78 NOT (A) NOT on a reg. indirect oper. (addr in A)
79 NOT (B) NOT on a reg. indirect oper. (addr in B)
7A NOT A+addrword NOT on an indexed oper. (index in A)
7B NOT B+addrword NOT on an indexed oper. (index in B)
7C SWAP A Swap A register lo and hi bytes
7D SWAP B Swap B register lo and hi bytes
80 CMP #dataword,A Compare an immediate oper. with A reg
81 CMP #dataword,B Compare an immediate oper. with B reg
82 CMP addrword,A Compare a direct oper. with A reg.
83 CMP addrword,B Compare a direct oper. with B reg.
84 CMP (addrword),A Compare an indirect oper. with A reg.
85 CMP (addrword),B Compare an indirect oper. with B reg.
86 CMP B,A Compare A and B reg.
87 CMP A,B Compare B and A reg.
88 CMP (B),A Compare A with a reg. indirect oper.
89 CMP (A),B Compare B with a reg. indirect oper.
8A CMP B+addrword,A Compare with A an indexed oper.
8B CMP A+addrword,B Compare with B an indexed oper.
8C PUSH A Push A onto the stack
8D PUSH B Push B onto the stack
8E POP A Pop A from the stack
8F POP B Pop B from the stack
90 MOVE #dataword,A Move an immediate oper. into A
91 MOVE #dataword,B Move an immediate oper. into B
92 MOVE addrword,A Load reg. A from a direct addr
93 MOVE addrword,B Load reg. B from a direct addr
94 MOVE (addrword),A Load reg. A from an indirect addr
95 MOVE (addrword),B Load reg. B from an indirect addr
96 MOVE B,A Move B reg. to A reg.
97 MOVE A,B Move A reg. to B reg.
98 MOVE (B),A Load A reg. with a reg. indirect oper.
99 MOVE (A),B Load B reg. with a reg. indirect oper.
9A MOVE B+addrword,A Load A reg from an indexed addr (index in B)
9B MOVE A+addrword,B Load B reg from an indexed addr (index in A)
A2 MOVE A,addrword Store the A reg. in memory at a direct addr
A3 MOVE B,addrword Store the B reg. in memory at a direct addr
A4 MOVE A,(addrword) Store reg. A at a mem. indirect addr
A5 MOVE B,(addrword) Store reg. B at a mem. indirect addr
A6 MOVE #dataword,SP Move an immediate oper. into SP
A7 MOVE addrword,SP Load reg. SP from a direct addr
A8 MOVE A,(B) Store A reg. at an addr held in B
A9 MOVE B,(A) Store B reg. at an addr held in A
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AA MOVE A,B+addrword Store A reg. at an indexed addr (index in B)
AB MOVE B,A+addrword Store B reg. at an indexed addr (index in A)
AC MOVE (addrword),SP Load reg. SP from an indirect addr
AD MOVE A,SP Move A reg. to SP reg.
AE MOVE B,SP Move B reg. to SP reg.
B0 BCC #disword Branch on carry clear to a PC relative addr
B1 BCS #disword Branch on carry set to a PC relative addr
B2 BCC addrword Branch to a direct addr if carry flag clear (C=0)
B3 BCS addrword Branch to a direct addr if carry flag set (C=1)
B4 BCC (addrword) Branch to an indirect addr if carry flag is clear
B5 BCS (addrword) Branch to an indirect addr if carry flag is set
B8 BPL #disword Branch on negative clear to a PC relative addr
B9 BMI #disword Branch on negative set to a PC relative addr
BA BPL addrword Branch to a direct addr if negative flag clear (N=0)
BB BMI addrword Branch to a direct addr if negative flag set (N=1)
BC BPL (addrword) Branch to an indirect addr if negative flag is clear
BD BMI (addrword) Branch to an indirect addr if negative flag is set
C0 BNE #disword Branch on zero clear to a PC relative addr
C1 BEQ #disword Branch on zero set to a PC relative addr
C2 BNE addrword Branch to a direct addr if zero flag clear (Z=0)
C3 BEQ addrword Branch to a direct addr if zero flag set (Z=1)
C4 BNE (addrword) Branch to an indirect addr if zero flag is clear
C5 BEQ (addrword) Branch to an indirect addr if zero flag is set
C8 BVC #disword Branch on no overflow to a PC relative addr
C9 BVS #disword Branch on overflow to a PC relative addr
CA BVC addrword Branch to a direct addr if overflow flag clear (V=0)
CB BVS addrword Branch to a direct addr if overflow flag set (V=1)
CC BVC (addrword) Branch to an indirect addr if overflow flag is clear
CD BVS (addrword) Branch to an indirect addr if overflow flag is set
D0 JSR addrword Jump to subroutine at a direct addr
D1 JSR (addrword) Jump to subroutine at an indirect addr
D2 JSR A Jump to subroutine at an addr held in the A reg.
D3 JSR B Jump to subroutine at an addr held in the B reg.
D4 JSR (A) Jump to subroutine at an indirect addr held in the A reg.
D5 JSR (B) Jump to subroutine at an indirect addr held in the B reg.
D6 JSR A+addrword Jump to subroutine at an indexed addr (index in A)
D7 JSR B+addrword Jump to subroutine at an indexed addr (index in B)
D8 JSR #disword Jump to subroutine at a PC relative addr
E0 JMP addrword Jump to a direct addr
E1 JMP (addrword) Jump to an indirect addr
E2 JMP A Jump to an addr held in the A reg.
E3 JMP B Jump to an addr held in the B reg.
E4 JMP (A) Jump to a reg. indirect addr.
E5 JMP (B) Jump to a reg. indirect addr
E6 JMP A+addrword Jump to an indexed addr (index in A)
E7 JMP B+addrword Jump to an indexed addr (index in B)
E8 JMP #disword Jump to a PC relative addr
E9 MUL B,A Multiply A by B, result in A
EA DIV B,A Divide A by B, result in A
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EB MOD B,A Mod of divide A by B, result in A
EC MOD B,#dataword Mod of divide B by dataword, result in B
ED DIV B,#dataword Divide B by dataword, result in B
EE DIV A,#dataword Divide A by dataword, result in A
F0 HALT Halt processor
F1 RTS Return from subroutine
F2 NOP No operation
F3 INTE Enable interrupts
F4 INTD disable interrupts
FA TRAP #dataword Software interrupt mechanism
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The Advanced
Instruction Set

A listing of the complete advanced JASP instruction set including microcode
information, as shipped with the simulation package.

* A 32-bit instruction set for the JASP architecture.
*
* Originally based on an instruction set
* by William Henderson.
*
* Revision : 0.9.3
* Author : Mark Burrell
* Date : 29-MAR-2003
*
*
* Force the JASM assembler to use 32-bit operations
Force_32bit
*
Fetch
* fetch cycle definition
MAR<-[PC]
INC<-[PC]
PC<-[INC]
MDR<-[M[MAR]]
IR<-[MDR]
MAR<-[PC] } operand in MDR
INC<-[PC] }
PC<-[INC] }
MDR<-[M[MAR]] }
CU<-[IR(opcode)]

Interrupt
* interrupt routine
PSR(I)=0 interrupt flag = 0
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MAR<-[SP] } save PSR
MDR<-[PSR] } on the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
PSR(E)=0 interrupt enable flag = 0
ALUy<-[JUMPERS(IntBase)] }
ALUx<-[PSR(IntVec)] } build the vector address
ALUr=[ALUx]+[ALUy] }
MAR<-[ALUr] } obtain the handler address
MDR<-[M[MAR]] }
PC<-[MDR] load address of handler into PC

Opcode fa
Mnemonic "TRAP #dataword"
Description "Software interrupt mechanism"
* programmably trigger the interrupt routine
*
* The #dataword value is masked with %00000111
* to produce the interrupt vector
*
PSR(IntVec)<-[MDR] } Load the PSR with the Interrupt Vector
PSR(I)=1 } Fire the interrupt

Opcode 00
Mnemonic "ADD #dataword,A"
Description "Add to reg. A an immediate oper."
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 01
Mnemonic "ADD #dataword,B"
Description "Add to reg. B an immediate oper."
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 02
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Mnemonic "ADD addrword,A"
Description "Add to reg. A from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 03
Mnemonic "ADD addrword,B"
Description "Add to reg. B from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 04
Mnemonic "ADD (addrword),A"
Description "Add to reg. A from an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 05
Mnemonic "ADD (addrword),B"
Description "Add to reg. B from an indirect addr."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 06
Mnemonic "ADD B,A"
Description "Add B reg. to contents of A reg."
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
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A<-[ALUr]

Opcode 07
Mnemonic "ADD A,B"
Description "Add A reg. to contents of B reg."
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 08
Mnemonic "ADD (B),A"
Description "Add B reg. indirect oper. to A reg."
MAR<-[B]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 09
Mnemonic "ADD (A),B"
Description "Add A reg. indirect oper. to B reg."
MAR<-[A]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 0a
Mnemonic "ADD B+addrword,A"
Description "Add to reg. A from an indexed addr (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
A<-[ALUr]

Opcode 0b
Mnemonic "ADD A+addrword,B"
Description "Add to reg. B from an indexed addr (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
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MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
B<-[ALUr]

Opcode 10
Mnemonic "ADC #dataword,A"
Description "Add with carry to reg. A an immediate oper."
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 11
Mnemonic "ADC #dataword,B"
Description "Add with carry to reg. B an immediate oper."
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 12
Mnemonic "ADC addrword,A"
Description "Add with carry to reg. A from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 13
Mnemonic "ADC addrword,B"
Description "Add with carry to reg. B from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 14
Mnemonic "ADC (addrword),A"
Description "Add with carry to reg. A from an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
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MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 15
Mnemonic "ADC (addrword),B"
Description "Add with carry to reg. B from an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 16
Mnemonic "ADC B,A"
Description "Add with carry to A reg. from B reg."
ALUy<-[B]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 17
Mnemonic "ADC A,B"
Description "Add with carry to B reg. from A reg."
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 18
Mnemonic "ADC (B),A"
Description "Add with carry to B reg. a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 19
Mnemonic "ADC (A),B"
Description "Add with carry to B reg. a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
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ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 1a
Mnemonic "ADC B+addrword,A"
Description "Add with carry to reg. A an indexed oper. (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
A<-[ALUr]

Opcode 1b
Mnemonic "ADC A+addrword,B"
Description "Add with carry to reg. B an indexed oper. (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]+[PSR(c)]
B<-[ALUr]

Opcode 20
Mnemonic "SUB #dataword,A"
Description "Subtract an immediate oper. from A reg"
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 21
Mnemonic "SUB #dataword,B"
Description "Subtract an immediate oper. from B reg"
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 22
Mnemonic "SUB addrword,A"
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Description "Subtract from reg. A a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 23
Mnemonic "SUB addrword,B"
Description "Subtract from reg. B a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 24
Mnemonic "SUB (addrword),A"
Description "Subtract from reg. A an indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 25
Mnemonic "SUB (addrword),B"
Description "Subtract from reg. B an indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 26
Mnemonic "SUB B,A"
Description "Subtract from reg. A the contents of reg. B"
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]
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Opcode 27
Mnemonic "SUB A,B"
Description "Subtract from reg. B the contents of reg. A"
ALUx<-[B]
ALUy<-[A]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 28
Mnemonic "SUB (B),A"
Description "Subtract from reg. A a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 29
Mnemonic "SUB (A),B"
Description "Subtract from reg. B a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 2a
Mnemonic "SUB B+addrword,A"
Description "Subtract an indexed oper. from the reg. A (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]-[ALUy]
A<-[ALUr]

Opcode 2b
Mnemonic "SUB A+addrword,B"
Description "Subtract an indexed oper. from the reg. B (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
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MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]-[ALUy]
B<-[ALUr]

Opcode 32
Mnemonic "SHL addrword"
Description "Shift left a memory direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 34
Mnemonic "SHL (addrword)"
Description "Shift left a memory indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 36
Mnemonic "SHL A"
Description "Shift left reg. A"
ALUx<-[A]
ALUr=[ALUx]<<1
A<-[ALUr]

Opcode 37
Mnemonic "SHL B"
Description "Shift left reg. B"
ALUx<-[B]
ALUr=[ALUx]<<1
B<-[ALUr]

Opcode 38
Mnemonic "SHL (A)"
Description "Shift left a reg. indirect oper., addr in A"
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
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MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 39
Mnemonic "SHL (B)"
Description "Shift left a reg. indirect oper., addr in B"
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 3a
Mnemonic "SHL A+addrword"
Description "Shift left an indexed oper. (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 3b
Mnemonic "SHL B+addrword"
Description "Shift left an indexed oper. (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]<<1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 42
Mnemonic "SHR addrword"
Description "Shift right a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]
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Opcode 44
Mnemonic "SHR (addrword)"
Description "Shift right a memory indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 46
Mnemonic "SHR A"
Description "Shift right the contents of reg. A"
ALUx<-[A]
ALUr=[ALUx]>>1
A<-[ALUr]

Opcode 47
Mnemonic "SHR B"
Description "Shift right the contents of reg. B"
ALUx<-[B]
ALUr=[ALUx]>>1
B<-[ALUr]

Opcode 48
Mnemonic "SHR (A)"
Description "Shift right a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 49
Mnemonic "SHR (B)"
Description "Shift right a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 4a
Mnemonic "SHR A+addrword"
Description "Shift right a memory indexed oper. (index in A)"
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ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 4b
Mnemonic "SHR B+addrword"
Description "Shift right a memory indexed oper. (Index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=[ALUx]>>1
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 50
Mnemonic "AND #dataword,A"
Description "AND operation on A reg and an immediate oper."
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 51
Mnemonic "AND #dataword,B"
Description "AND operation on B reg and an immediate oper."
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 52
Mnemonic "AND addrword,A"
Description "AND operation on A and a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]
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Opcode 53
Mnemonic "AND addrword,B"
Description "AND operation on B and a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 54
Mnemonic "AND (addrword),A"
Description "AND operation on A and an indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 55
Mnemonic "AND (addrword),B"
Description "AND operation on B and an indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 56
Mnemonic "AND B,A"
Description "AND on A and B, result in A"
ALUy<-[B]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 57
Mnemonic "AND A,B"
Description "AND on B and A, result in B"
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

416



www.manaraa.com

The Advanced Instruction Set

Opcode 58
Mnemonic "AND (B),A"
Description "AND on A and a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 59
Mnemonic "AND (A),B"
Description "AND on B and a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 5a
Mnemonic "AND B+addrword,A"
Description "AND operation on A and an indexed oper."
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]&[ALUy]
A<-[ALUr]

Opcode 5b
Mnemonic "AND A+addrword,B"
Description "AND operation on B and an indexed oper."
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]&[ALUy]
B<-[ALUr]

Opcode 60
Mnemonic "OR #dataword,A"
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Description "OR operation on A reg and an immediate oper."
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 61
Mnemonic "OR #dataword,B"
Description "OR operation on B reg and an immediate oper."
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 62
Mnemonic "OR addrword,A"
Description "OR operation on A and a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 63
Mnemonic "OR addrword,B"
Description "OR operation on B and a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 64
Mnemonic "OR (addrword),A"
Description "OR operation on A and an indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 65
Mnemonic "OR (addrword),B"
Description "OR operation on B and an indirect oper."
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MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 66
Mnemonic "OR B,A"
Description "OR on A and B, result in A"
ALUy<-[B]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 67
Mnemonic "OR A,B"
Description "OR on B and A, result in B"
ALUy<-[A]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 68
Mnemonic "OR (B),A"
Description "OR on A and a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 69
Mnemonic "OR (A),B"
Description "OR on B and a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUy<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 6a
Mnemonic "OR B+addrword,A"
Description "OR operation on A and an indexed oper."
ALUy<-[MDR]
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ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]|[ALUy]
A<-[ALUr]

Opcode 6b
Mnemonic "OR A+addrword,B"
Description "OR operation on B and an indexed oper."
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]|[ALUy]
B<-[ALUr]

Opcode 72
Mnemonic "NOT addrword"
Description "NOT operation on a direct oper."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 74
Mnemonic "NOT (addrword)"
Description "NOT operation on an indirect oper."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 76
Mnemonic "NOT A"
Description "NOT operation on A reg."
ALUx<-[A]
ALUr=~[ALUx]
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A<-[ALUr]

Opcode 77
Mnemonic "NOT B"
Description "NOT operation on B reg."
ALUx<-[B]
ALUr=~[ALUx]
B<-[ALUr]

Opcode 78
Mnemonic "NOT (A)"
Description "NOT on a reg. indirect oper. (addr in A)"
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 79
Mnemonic "NOT (B)"
Description "NOT on a reg. indirect oper. (addr in B)"
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 7a
Mnemonic "NOT A+addrword"
Description "NOT on an indexed oper. (index in A)"
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 7b
Mnemonic "NOT B+addrword"
Description "NOT on an indexed oper. (index in B)"
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
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MDR<-[M[MAR]]
ALUx<-[MDR]
ALUr=~[ALUx]
MDR<-[ALUr]
M[MAR]<-[MDR]

Opcode 7c
Mnemonic "SWAP A"
Description "Swap A register lo and hi bytes"
ALUx<-[A]
ALUr(7:0)=[ALUx(15:8)];ALUr(15:8)=[ALUx(7:0)]
A<-[ALUr]

Opcode 7d
Mnemonic "SWAP B"
Description "Swap B register lo and hi bytes"
ALUx<-[B]
ALUr(7:0)=[ALUx(15:8)];ALUr(15:8)=[ALUx(7:0)]
B<-[ALUr]

Opcode 80
Mnemonic "CMP #dataword,A"
Description "Compare an immediate oper. with A reg"
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 81
Mnemonic "CMP #dataword,B"
Description "Compare an immediate oper. with B reg"
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 82
Mnemonic "CMP addrword,A"
Description "Compare a direct oper. with A reg."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]-[ALUy]

Opcode 83
Mnemonic "CMP addrword,B"
Description "Compare a direct oper. with B reg."
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
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ALUx<-[B]
ALUr=[ALUx]-[ALUy]

Opcode 84
Mnemonic "CMP (addrword),A"
Description "Compare an indirect oper. with A reg."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]-[ALUy]

Opcode 85
Mnemonic "CMP (addrword),B"
Description "Compare an indirect oper. with B reg."
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]-[ALUy]

Opcode 86
Mnemonic "CMP B,A"
Description "Compare A and B reg."
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]-[ALUy]

Opcode 87
Mnemonic "CMP A,B"
Description "Compare B and A reg."
ALUx<-[B]
ALUy<-[A]
ALUr=[ALUx]-[ALUy]

Opcode 88
Mnemonic "CMP (B),A"
Description "Compare A with a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 89
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Mnemonic "CMP (A),B"
Description "Compare B with a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 8a
Mnemonic "CMP B+addrword,A"
Description "Compare with A an indexed oper."
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 8b
Mnemonic "CMP A+addrword,B"
Description "Compare with B an indexed oper."
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]-[ALUy]

Opcode 8c
Mnemonic "PUSH A"
Description "Push A onto the stack"
MAR<-[SP]
MDR<-[A]
M[MAR]<-[MDR]
ALUx<-[SP]
ALUr=[ALUx]-1
SP<-[ALUr]

Opcode 8d
Mnemonic "PUSH B"
Description "Push B onto the stack"
MAR<-[SP]
MDR<-[B]
M[MAR]<-[MDR]
ALUx<-[SP]
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ALUr=[ALUx]-1
SP<-[ALUr]

Opcode 8e
Mnemonic "POP A"
Description "Pop A from the stack"
ALUx<-[SP]
ALUr=[ALUx]+1
SP<-[ALUr]
MAR<-[SP]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 8f
Mnemonic "POP B"
Description "Pop B from the stack"
ALUx<-[SP]
ALUr=[ALUx]+1
SP<-[ALUr]
MAR<-[SP]
MDR<-[M[MAR]]
B<-[MDR]

Opcode 90
Mnemonic "MOVE #dataword,A"
Description "Move an immediate oper. into A"
A<-[MDR]

Opcode 91
Mnemonic "MOVE #dataword,B"
Description "Move an immediate oper. into B"
B<-[MDR]

Opcode 92
Mnemonic "MOVE addrword,A"
Description "Load reg. A from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 93
Mnemonic "MOVE addrword,B"
Description "Load reg. B from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
B<-[MDR]

Opcode 94
Mnemonic "MOVE (addrword),A"

425



www.manaraa.com

Fundamentals of Computer Architecture

Description "Load reg. A from an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 95
Mnemonic "MOVE (addrword),B"
Description "Load reg. B from an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
B<-[MDR]

Opcode 96
Mnemonic "MOVE B,A"
Description "Move B reg. to A reg."
MDR<-[B]
A<-[MDR]

Opcode 97
Mnemonic "MOVE A,B"
Description "Move A reg. to B reg."
MDR<-[A]
B<-[MDR]

Opcode 98
Mnemonic "MOVE (B),A"
Description "Load A reg. with a reg. indirect oper."
MAR<-[B]
MDR<-[M[MAR]]
A<-[MDR]

Opcode 99
Mnemonic "MOVE (A),B"
Description "Load B reg. with a reg. indirect oper."
MAR<-[A]
MDR<-[M[MAR]]
B<-[MDR]

Opcode 9a
Mnemonic "MOVE B+addrword,A"
Description "Load A reg from an indexed addr (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
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MDR<-[M[MAR]]
A<-[MDR]

Opcode 9b
Mnemonic "MOVE A+addrword,B"
Description "Load B reg from an indexed addr (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
B<-[MDR]

Opcode a2
Mnemonic "MOVE A,addrword"
Description "Store the A reg. in memory at a direct addr"
MAR<-[MDR]
MDR<-[A]
M[MAR]<-[MDR]

Opcode a3
Mnemonic "MOVE B,addrword"
Description "Store the B reg. in memory at a direct addr"
MAR<-[MDR]
MDR<-[B]
M[MAR]<-[MDR]

Opcode a4
Mnemonic "MOVE A,(addrword)"
Description "Store reg. A at a mem. indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[A]
M[MAR]<-[MDR]

Opcode a5
Mnemonic "MOVE B,(addrword)"
Description "Store reg. B at a mem. indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[B]
M[MAR]<-[MDR]

Opcode a6
Mnemonic "MOVE #dataword,SP"
Description "Move an immediate oper. into SP"
SP<-[MDR]
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Opcode a7
Mnemonic "MOVE addrword,SP"
Description "Load reg. SP from a direct addr"
MAR<-[MDR]
MDR<-[M[MAR]]
SP<-[MDR]

Opcode a8
Mnemonic "MOVE A,(B)"
Description "Store A reg. at an addr held in B"
MAR<-[B]
MDR<-[A]
M[MAR]<-[MDR]

Opcode a9
Mnemonic "MOVE B,(A)"
Description "Store B reg. at an addr held in A"
MAR<-[A]
MDR<-[B]
M[MAR]<-[MDR]

Opcode aa
Mnemonic "MOVE A,B+addrword"
Description "Store A reg. at an indexed addr (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[A]
M[MAR]<-[MDR]

Opcode ab
Mnemonic "MOVE B,A+addrword"
Description "Store B reg. at an indexed addr (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[B]
M[MAR]<-[MDR]

Opcode ac
Mnemonic "MOVE (addrword),SP"
Description "Load reg. SP from an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
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SP<-[MDR]

Opcode ad
Mnemonic "MOVE A,SP"
Description "Move A reg. to SP reg."
MDR<-[A]
SP<-[MDR]

Opcode ae
Mnemonic "MOVE B,SP"
Description "Move B reg. to SP reg."
MDR<-[B]
SP<-[MDR]

Opcode b0
Mnemonic "BCC #disword"
Description "Branch on carry clear to a PC relative addr"
if(PSR(c)==0)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode b1
Mnemonic "BCS #disword"
Description "Branch on carry set to a PC relative addr"
if(PSR(c)==1)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode b2
Mnemonic "BCC addrword"
Description "Branch to a direct addr if carry flag clear (C=0)"
if(PSR(c)==0)
PC<-[MDR]

Opcode b3
Mnemonic "BCS addrword"
Description "Branch to a direct addr if carry flag set (C=1)"
if(PSR(c)==1)
PC<-[MDR]

Opcode b4
Mnemonic "BCC (addrword)"
Description "Branch to an indirect addr if carry flag is clear"
if(PSR(c)==0)
MAR<-[MDR]
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MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode b5
Mnemonic "BCS (addrword)"
Description "Branch to an indirect addr if carry flag is set"
if(PSR(c)==1)
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode b8
Mnemonic "BPL #disword"
Description "Branch on negative clear to a PC relative addr"
if(PSR(n)==0)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode b9
Mnemonic "BMI #disword"
Description "Branch on negative set to a PC relative addr"
if(PSR(n)==1)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode ba
Mnemonic "BPL addrword"
Description "Branch to a direct addr if negative flag clear (N=0)"
if(PSR(n)==0)
PC<-[MDR]

Opcode bb
Mnemonic "BMI addrword"
Description "Branch to a direct addr if negative flag set (N=1)"
if(PSR(n)==1)
PC<-[MDR]

Opcode bc
Mnemonic "BPL (addrword)"
Description "Branch to an indirect addr if negative flag is clear"
if(PSR(n)==0)
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MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode bd
Mnemonic "BMI (addrword)"
Description "Branch to an indirect addr if negative flag is set"
if(PSR(n)==1)
MAR<-[MDR]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode c0
Mnemonic "BNE #disword"
Description "Branch on zero clear to a PC relative addr"
if(PSR(z)==0)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode c1
Mnemonic "BEQ #disword"
Description "Branch on zero set to a PC relative addr"
if(PSR(z)==1)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode c2
Mnemonic "BNE addrword"
Description "Branch to a direct addr if zero flag clear (Z=0)"
if(PSR(z)==0)
PC<-[MDR]

Opcode c3
Mnemonic "BEQ addrword"
Description "Branch to a direct addr if zero flag set (Z=1)"
if(PSR(z)==1)
PC<-[MDR]

Opcode c4
Mnemonic "BNE (addrword)"
Description "Branch to an indirect addr if zero flag is clear"
if(PSR(z)==0)
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MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode c5
Mnemonic "BEQ (addrword)"
Description "Branch to an indirect addr if zero flag is set"
if(PSR(z)==1)
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode c8
Mnemonic "BVC #disword"
Description "Branch on no overflow to a PC relative addr"
if(PSR(v)==0)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode c9
Mnemonic "BVS #disword"
Description "Branch on overflow to a PC relative addr"
if(PSR(v)==1)
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode ca
Mnemonic "BVC addrword"
Description "Branch to a direct addr if overflow flag clear (V=0)"
if(PSR(v)==0)
PC<-[MDR]

Opcode cb
Mnemonic "BVS addrword"
Description "Branch to a direct addr if overflow flag set (V=1)"
if(PSR(v)==1)
PC<-[MDR]

Opcode cc
Mnemonic "BVC (addrword)"
Description "Branch to an indirect addr if overflow flag is clear"
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if(PSR(v)==0)
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode cd
Mnemonic "BVS (addrword)"
Description "Branch to an indirect addr if overflow flag is set"
if(PSR(v)==1)
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d0
Mnemonic "JSR addrword"
Description "Jump to subroutine at a direct addr"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
ALUr=[ALUx]-1 }
MAR<-[ALUr] } go back for the operand
MDR<-[M[MAR]] }
PC<-[MDR] }

Opcode d1
Mnemonic "JSR (addrword)"
Description "Jump to subroutine at an indirect addr"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
ALUr=[ALUx]-1 }
MAR<-[ALUr] } go back for the operand
MDR<-[M[MAR]] }
MAR<-[MDR] }
MDR<-[M[MAR]]
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MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d2
Mnemonic "JSR A"
Description "Jump to subroutine at an addr held in the A reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MDR<-[A]
PC<-[MDR]

Opcode d3
Mnemonic "JSR B"
Description "Jump to subroutine at an addr held in the B reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
PC<-[B]

Opcode d4
Mnemonic "JSR (A)"
Description "Jump to subroutine at an indirect addr held in the A reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MAR<-[A]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d5
Mnemonic "JSR (B)"
Description "Jump to subroutine at an indirect addr held in the B reg."
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
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M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
MAR<-[B]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d6
Mnemonic "JSR A+addrword"
Description "Jump to subroutine at an indexed addr (index in A)"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
ALUr=[ALUx]-1 }
MAR<-[ALUr] } go back for the operand
MDR<-[M[MAR]] }
ALUy<-[MDR] }
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode d7
Mnemonic "JSR B+addrword"
Description "Jump to subroutine at an indexed addr (index in B)"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
ALUr=[ALUx]-1 }
MAR<-[ALUr] } go back for the operand
MDR<-[M[MAR]] }
ALUy<-[MDR] }
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]
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Opcode d8
Mnemonic "JSR #disword"
Description "Jump to subroutine at a PC relative addr"
ALUx<-[PC] }
MDR<-[ALUx] } write PC
MAR<-[SP] } to the stack
M[MAR]<-[MDR] }
ALUx<-[SP] } decrement
ALUr=[ALUx]-1 } SP
SP<-[ALUr] }
ALUx<-[PC] }
ALUr=[ALUx]-1 }
MAR<-[ALUr] } go back for the operand
MDR<-[M[MAR]] }
ALUr=[ALUx]+1 ALUx still contains PC
ALUx<-[ALUr]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode e0
Mnemonic "JMP addrword"
Description "Jump to a direct addr"
PC<-[MDR]

Opcode e1
Mnemonic "JMP (addrword)"
Description "Jump to an indirect addr"
MAR<-[MDR]
MDR<-[M[MAR]]
MAR<-[MDR]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e2
Mnemonic "JMP A"
Description "Jump to an addr held in the A reg."
MDR<-[A]
PC<-[MDR]

Opcode e3
Mnemonic "JMP B"
Description "Jump to an addr held in the B reg."
PC<-[B]

Opcode e4
Mnemonic "JMP (A)"
Description "Jump to a reg. indirect addr."
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MAR<-[A]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e5
Mnemonic "JMP (B)"
Description "Jump to a reg. indirect addr"
MAR<-[B]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e6
Mnemonic "JMP A+addrword"
Description "Jump to an indexed addr (index in A)"
ALUy<-[MDR]
ALUx<-[A]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e7
Mnemonic "JMP B+addrword"
Description "Jump to an indexed addr (index in B)"
ALUy<-[MDR]
ALUx<-[B]
ALUr=[ALUx]+[ALUy]
MAR<-[ALUr]
MDR<-[M[MAR]]
PC<-[MDR]

Opcode e8
Mnemonic "JMP #disword"
Description "Jump to a PC relative addr"
ALUx<-[PC]
ALUy<-[MDR]
ALUr=[ALUx]+[ALUy]
PC<-[ALUr]

Opcode f0
Mnemonic "HALT"
Description "Halt processor"
HALT

Opcode f1
Mnemonic "RTS"
Description "Return from subroutine"
ALUx<-[SP] } increment
ALUr=[ALUx]+1 } SP
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SP<-[ALUr] }
MAR<-[SP] } recover PC
MDR<-[M[MAR]] } from the stack
PC<-[MDR] }

Opcode f2
Mnemonic "NOP"
Description "No operation"
NOP

Opcode ff
Mnemonic "RTI"
Description "Return from interrupt"
*
* Recover PC and PSR from the stack
*
ALUx<-[SP] } increment
ALUr=[ALUx]+1 } SP
SP<-[ALUr] }
MAR<-[SP] } recover PC
MDR<-[M[MAR]] } from the stack
PC<-[MDR] }
ALUx<-[SP] } increment
ALUr=[ALUx]+1 } SP
SP<-[ALUr] }
MAR<-[SP] } recover PSR
MDR<-[M[MAR]] } from the stack
PSR<-[MDR] }

Opcode f3
Mnemonic "INTE"
Description "Enable interrupts"
PSR(E)=1

Opcode f4
Mnemonic "INTD"
Description "disable interrupts"
PSR(E)=0

Opcode e9
Mnemonic "MUL B,A"
Description "Multiply A by B, result in A"
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]*[ALUy]
A<-[ALUr]

Opcode ea
Mnemonic "DIV B,A"
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Description "Divide A by B, result in A"
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]/[ALUy]
A<-[ALUr]

Opcode eb
Mnemonic "MOD B,A"
Description "Mod of divide A by B, result in A"
ALUx<-[A]
ALUy<-[B]
ALUr=[ALUx]%[ALUy]
A<-[ALUr]

Opcode ec
Mnemonic "MOD B,#dataword"
Description "Mod of divide B by dataword, result in B"
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]%[ALUy]
B<-[ALUr]

Opcode ed
Mnemonic "DIV B,#dataword"
Description "Divide B by dataword, result in B"
ALUx<-[B]
ALUy<-[MDR]
ALUr=[ALUx]/[ALUy]
B<-[ALUr]

Opcode ee
Mnemonic "DIV A,#dataword"
Description "Divide A by dataword, result in A"
ALUx<-[A]
ALUy<-[MDR]
ALUr=[ALUx]/[ALUy]
A<-[ALUr]
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An Introduction to
Digital Works

F.1 Introducing Digital Works

Digital Works is a tool that allows you to not only create digital circuitry, but to
also test it in a simulation mode.

The aim of this brief introduction is to show how Digital Works can be used to
understand the fundamental aspects of digital circuitry.

F.2 Obtaining Digital Works

The Digital Works package is copyright Mechanique and is distributed by
Matrix Multimedia Ltd.

Their website is http://www.matrixmultimedia.co.uk

Additionally, a copy of Digital Works with a 30-day license is available on the
accompanying CD.

F.3 Installing Digital Works

The Digital Works distribution is provided in the form of a standard self-
extracting archive and installer for Microsoft Windows. Simply run the exe-
cutable file and follow the on-screen menus - as part of this they will ask you
for an installation directory.
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F.4 Using Digital Works

On starting Digital Works for the first time you see the application as it is shown
in figure F.1.

Figure F.1 Digital Works

As you can see, Digital Works has a menu bar and three button bars for the
user to create and run digital circuits. Each of these bars are detailed below.
You can also find out the use of each button by holding the mouse pointer
over the button - a useful message pops over the button describing what it
does. The main part of Digital Works is the drawing area, where circuits can
be designed and run.
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F.4.1 The Menu Bar

The menu bar is a standard Windows menu bar, and allows the user to create,
open or save digital circuit files. It also gives access to features such as the
logic history window, which is outside the scope of this brief introduction.

F.4.2 The File Button Bar

The top-most button bar provides functionality typical to most Windows pro-
grams, and will be recognizable to all those who have used other Windows
programs.

These buttons provide the following functionality:

� Create a new circuit;

� Open a circuit;

� Save a circuit;

� Cut;

� Copy;

� Paste;

� Print a circuit.

F.4.3 The Objects And Devices Button Bar

The second button bar is a little more complex, and provides the main func-
tionality to build digital electronic circuits. It is divided up into four sections,
which are:

� Digital objects;

� Input devices;

� Output devices;

� Additional tools.

Each section is described below.
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Digital Objects

The digital objects buttons allow the user to place components into the drawing
area. To place a component into the drawing area you need to first click on the
relevant button and then on the point in the drawing area where you wish the
component to be placed. Each component needs to be selected individually,
even if you wished to place multiple copies of the same component into the
drawing area.

These buttons allow the user to select the following components:

� AND gate;

� OR gate;

� NOT gate;

� NAND gate;

� NOR gate;

� XOR gate;

� XNOR gate;

� Tri-state gate;

� D flip-flop;

� JK flip-flop;

� RS flip-flop;

� Memory device;

� Switch;

� Macro tag;

Input Devices

The input devices buttons allow the user to place input components into the
drawing area.

These buttons allow the user to select the following components:

� Sequence generator;

� Clock;

� Interactive input;

� Ground;

� Power supply.
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Output Devices

The output devices buttons allow the user to place output components into the
drawing area.

These buttons allow the user to select the following components:

� LED;

� Seven segment LED;

� Numeric output device.

Additional

Finally, the additional buttons give the user the ability to add labels to compo-
nents to describe their use, and provides the ability to wire up components to
form a digital circuit.

F.4.4 The Control Button Bar

It is with the control button bar that users can then run their completed circuits.

These buttons are described here:

� Run the circuit;

� Stop the circuit;

� Pause the circuit;

� Step through the circuit;

� Object selector - the arrow pointer;

� Object interaction selector - the hand pointer;

� logic probe - to check the logic level on a particular wire;

� Access to the parts centre - a useful set of pre-created circuits that you
can make use of.

445



www.manaraa.com

Fundamentals of Computer Architecture

F.5 Creating And Running Your Own
Circuits

We will now look at how to use Digital Works to create and run a small circuit.

The circuit we wish to create is shown in figure F.2, which is the S output of a
full-adder.

X Y Cin X Y Cin

N1

N2

N3

A1

A2

A3

A4

O1

S

Figure F.2 The circuit we wish to model

We will create this circuit and test it in stages.

F.5.1 Creating The Circuit - Stage 1

The first thing we need to do is make use of the objects and devices buttons
to place all the required components into the drawing area. This is shown in
figure F.3.
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Figure F.3 Stage 1

At this stage the circuit has already been saved in a file called Test
Circuit.dwm, as shown in the main application bar at the top of the
application.

F.5.2 Creating The Circuit - Stage 2

Next we need to set all components to have the correct number of inputs - for
example, the OR gate requires four inputs. These are changed by clicking on
the components with the right mouse button and selecting the ‘inputs’ option.

Additionally, we need to add three interactive inputs, so we can change the
values of the X, Y and C inputs. Also, we need to add tag devices to anchor
the wire that do not have end points that are connected to components.
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Lastly, a single LED is added to display the output.

We now have the circuit displayed in figure F.4.

Figure F.4 Stage 2

F.5.3 Creating The Circuit - Stage 3

Next we use the wiring tool to wire the individual components together, starting
with the lines that carry X, Y, C, X̄, Ȳ and C̄. Once the wiring tools is selected,
you can join up components - the message ‘attach’ appears when you place
the wiring tool over a point that it can connect a wire. The wiring tools is a
virtual soldering iron.
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It is very easy to delete wires that you have wired incorrectly, you merely need
to select them with the arrow pointer and then hit the delete button on your
keyboard. You can either wire two components directly together, or with in-
termediate mouse clicks you can specify the route that the wire is to take -
again, it is easy to move points just by selecting them with the arrow pointer
and moving each point individually.

Once all wiring is completed we should now have the circuit displayed in figure
F.5.

Figure F.5 Stage 3
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F.5.4 Creating The Circuit - Stage 4

We can now complete the circuit design by adding labels, using the annotation
button. The completed circuit is displayed in figure F.6. Of course, we haven’t
finished yet - we need to now run our circuit to see what it does.

Figure F.6 Stage 4

F.5.5 Testing The Circuit

To run our circuit we first select the hand pointer and then we click on the run
button. Once we do this our circuit is running - and we can see that with X, Y
and C all set to zero, the output S is set to a logical zero because it is grey.
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Later on, when we change the inputs to our circuit we will see the LED turn
red, to indicate that the output is a logical one.

In fact, try clicking with the hand pointer on the interactive input for X. You
should see the circuit as it is displayed in figure F.7.

Figure F.7 Testing the circuit

As you can see, when a wire is carrying a logical zero, it appears grey, while
any wire carrying a logical one appears in black - so just by looking at the
circuit we can visibly see the state of all the inputs and outputs.

The creation and testing of all digital circuits within Digital Works would follow
the same pattern as has been specified here.
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F.5.6 The Parts Centre

In addition, Digital Works has a very powerful facility known as a macro facility.
Within this facility it is possible to embed one circuit into another.

You can make use of the pre-created circuits by using the parts centre menu -
as shown in figure F.8. To use any of the pre-created macros you click on the
particular macro, and holding the left mouse button down, you drag the macro
to the drawing area.

Figure F.8 Macros available in the Digital Works part centre

You can also build your own macro circuits, but the creation of new macros is
beyond the scope of this brief introduction.
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Answers To Self Test
Exercises

G.1 Answers To Chapter 1
1 One possible program to make toast is:

� Acquire fresh loaf;

� Cut 2 slices, approximately 10mm wide, with cuts at a square angle to
the longest axis of the complete loaf;

� Check toaster has electrical power;

� Turn on toaster;

� Place slices in toaster;

� Wait until toaster ejects hot toast;

� Spread butter on hot toast slices;

� Eat hot toast, one slice at a time.

Please note that it is possible to be much more pedantic!

2 Obviously, your own program will be unique to you - it should contain in-
formation regarding the mode of transport (car, bus,etc) and details of the
route itself.

G.2 Answers To Chapter 2
1 001010102

2 1110

3 4D16

4 10111110111011112

5 4887910

6 001C16

7 000001002

8 001001112
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9 110001002 2’s complement overflow has occurred - this is indicated be-
cause both initial values were positive and the result is negative

10100010002 in hexadecimal is 8816

11In a 16-bit 2’s complement representation, −12 is represented as FFF416,
or 11111111111101002. In an 8-bit 2’s complement representation, −12 is
represented as F416, or 111101002

12The ASCII representation of ‘F’ is 4616

13The ASCII representation of ‘f’ is 6616

14The ASCII representation of ‘5’ is 3516

G.3 Answers To Chapter 3
1 The circuit looks like this:

R

0

0

0

0

1

1

1 1

X Y

1

0

0

1

X Y

R

This circuit is called an XNOR, because it outputs one only when both inputs
are equal.

2 You will have seen that for every combination of inputs, both outputs are
identical - proving that both parts of the circuit are functionally equal.

3 The truth table for this circuit is as follows:

R

0

0

0

0

1

1

1 1

X Y

1

0

1

0

This circuit is an XOR circuit.

4 Your circuit should match the functionality of the circuit in

\examples\chapter03\st3-4.dwm

You will have seen that for every combination of inputs, both outputs are
identical - proving that both parts of the circuit are functionally equal.

454



www.manaraa.com

Answers To Self Test Exercises

G.4 Answers To Chapter 4
1 MAR←[PC]
2 Place the required input in D, then clock the register by setting C to one and

then back to zero.

3 Place the required input in D, then clock the register by setting C to one and
then back to zero.

4 The D flip-flop is edge triggered - Q is only updated at the edge of C being
changed from 0 to 1. The D latch is triggered whenever C is set to one, if C
is left at one then Q reflects the input D.

5 Set D3 to one, D2 to zero, D1 to one and D0 to zero. Clock the register by
setting C to one and then back to zero. the register has now stored the bit
pattern 10102.

6 Use the set pins on the D flip-flops of register one to store the bit pattern
10112, so D3 should contain 1, D2 should contain zero and both D1 and D0
should contain one. At this point register one has stored the bit pattern, so
now we can enable the OE line of register one to place the bit pattern onto
the bus. Next we clock the C line of register two and then set register one
OE back to zero. We have now successfully transferred the bit pattern.

G.5 Answers To Chapter 5
1 453416

2 BB3416. The N flag is set because the MSB of BB3416 is one.

3 000016. Both the Z and C flags are set to one. The Z flag is set because all
bits in the ALUr are set to zero, while the C flag is set because the addition
generated a final carry.

4 000816. The shift left operation has effectively performed a multiplication by
two.

5 000416

6 003F16

7 Your circuit should match the functionality of the circuit in

\examples\chapter05\st5-7.dwm

You will have seen that for every combination of inputs, the outputs are iden-
tical to that of the full adder, and fully match the truth table that describes
the full adder.

G.6 Answers To Chapter 6
1 The data bus is used to transfer bit patterns between registers and memory.

2 B←[ALUr]
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3 MDR←[A]
4 The data bus is bi-directional, whereas individual lines of the control bus

are uni-directional. The data bus is used as a single component, whereas
the control lines that make up the control bus are used individually.

G.7 Answers To Chapter 7
1 The instructions required would be:

� MAR←000116

� MDR←[B]
� M [MAR]←[MDR]

2 The instructions required would be:

� MAR←00E016

� MDR←[M [MAR]]
� A←[MDR]

3 You would need to:

� Place $00FF in the MDR;

� Place $0003 in the MAR;

� Perform a memory write instruction, using either the menu or button
options.

G.8 Answers To Chapter 8
1 By checking in appendix B you can see that opcode $90 is the instruction:

MOVE #data,A
and appendix C shows us that this consists of the following micro-
instruction:

� A←[IR(operand)]

2 By checking in appendix B you can see that opcode $C3 is the instruction:
BEQ addr
and appendix C shows us that this consists of the following micro-
instructions:

� if(PSR(z) == 1)
� PC←[IR(operand)]

3 The INC register is used to add 1 to the PC. It’s use could be replaced by the
use of the ALU, however this would mean that it would then be impossible
to test the PSR flags after an ALU operation, as the PSR would also be
updated as part of the fetch cycle.
The fetch cycle would have to be changed to:

� MAR←[PC]
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� ALUx←[PC]
� ALUr = ALUx + 1
� PC←[ALUr]
� PC←[INC]
� MDR←[M [MAR]]
� IR←[MDR]
� CU←[IR(opcode)]

4 The control unit decodes both the fetch and execute cycles.

G.9 Answers To Chapter 9
1 Here is one possible solution:

# 0000 # * Self Test Question 9-1
# 0000 # * Find the answer to 6 + 5
# 0000 # *

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0

9006 # 0000 # MOVE #$06,A * A = 6
9105 # 0001 # MOVE #$05,B * B = 5
0600 # 0002 # ADD B,A * A = A + B
F000 # 0003 # HALT * stop the program on completion

# 0004 # * result is in A

2 Here is one possible solution:

# 0000 # * Self Test Question 9-2
# 0000 # * Find the answer to 6 + 5 where the values
# 0000 # * are stored in memory
# 0000 # *

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0

9210 # 0000 # MOVE num1,A * A = num1
9311 # 0001 # MOVE num2,B * B = num2
0600 # 0002 # ADD B,A * A = A + B
F000 # 0003 # HALT * stop the program on completion

# 0004 # * result is in A
ORG $0010 # 0010 # ORG $10
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0006 # 0010 # num1 DC.W $0006
0005 # 0011 # num2 DC.W $0005

3 Here is one possible solution:

# 0000 # * Self Test Question 9-3
# 0000 # * Compute the sum of the first ten integers
# 0000 # *
# 0000 # * In a high-level language:
# 0000 # *
# 0000 # * B = 0;
# 0000 # * for (A=1; A < 11; A++) {
# 0000 # * // payload to run while the condition is true
# 0000 # * B = B + A;
# 0000 # * } // end for
# 0000 #

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0
# 0000 #

9100 # 0000 # MOVE #^00,B * initialize B
9001 # 0001 # for MOVE #^01,A * initialize A
800B # 0002 # loop CMP #^11,A * check the condition
C307 # 0003 # BEQ end_for * if the condition is false, branch

# 0004 # * to the end of the for construct
# 0004 # * otherwise run the PAYLOAD

0700 # 0004 # ADD A,B * PAYLOAD : B = B + A
0001 # 0005 # ADD #^01,A * increment A once the payload has

# 0006 # * executed
E002 # 0006 # JMP loop * run the loop again
F000 # 0007 # end_for HALT * halt the program

# 0008 # * the result is in B

4 Here is one possible solution:

# 0000 # * Self Test Question 9-4
# 0000 # * Sort the values held at $20 and $21 such that
# 0000 # * the larger value is at the higher address.
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# 0000 # *
# 0000 # * In a high-level language:
# 0000 # *
# 0000 # * A = num1;
# 0000 # * B = num2;
# 0000 # * if (num2 > num1) {
# 0000 # * num1 = B;
# 0000 # * num2 = A;
# 0000 # * } // end if
# 0000 #

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0
# 0000 #

9220 # 0000 # MOVE num1,A * initialize B
9321 # 0001 # MOVE num2,B * initialize A
8600 # 0002 # CMP B,A * check the condition
BB05 # 0003 # BMI true * if the condition is true, branch

# 0004 # * to the payload
E007 # 0004 # JMP end_if * if it isn’t, go to the end of

# 0005 # * the ’if’
# 0005 # true

A320 # 0005 # MOVE B,num1 * } These lines
A221 # 0006 # MOVE A,num2 * } perform the swap
F000 # 0007 # end_if HALT

# 0008 #
ORG $0020 # 0020 # ORG $20
0045 # 0020 # num1 DC.W $0045
0088 # 0021 # num2 DC.W $0088

G.10 Answers To Chapter 10
1 Here is one possible solution:

# 0000 # * Self Test Question 10-1
# 0000 # * Sort the values held at $20 and $21 such that
# 0000 # * the larger value is at the higher address.
# 0000 # *
# 0000 # * In a high-level language:
# 0000 # *
# 0000 # * A = num1;
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# 0000 # * B = num2;
# 0000 # * if (num2 > num1) {
# 0000 # * swap();
# 0000 # * } // end if
# 0000 # *
# 0000 # * subroutine swap() {
# 0000 # * num1 = B;
# 0000 # * num2 = A;
# 0000 # * }
# 0000 #

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0
# 0000 #

9220 # 0000 # MOVE num1,A * initialize B
9321 # 0001 # MOVE num2,B * initialize A
8600 # 0002 # CMP B,A * check the condition
BB05 # 0003 # BMI true * if the condition is true, branch

# 0004 # * to the payload
E006 # 0004 # JMP end_if * if it isn’t, go to the end of

# 0005 # * the ’if’
D007 # 0005 # true JSR swap * run the swap subroutine
F000 # 0006 # end_if HALT

# 0007 #
# 0007 # swap

A320 # 0007 # MOVE B,num1 * } These lines
A221 # 0008 # MOVE A,num2 * } perform the swap
F100 # 0009 # RTS * return from subroutine

# 000A #
ORG $0020 # 0020 # ORG $20
0045 # 0020 # num1 DC.W $0045
0088 # 0021 # num2 DC.W $0088

2 All we have to do is update the list of values to be reversed - the program
does not need to be changed in any way.

3 Here is one possible solution:

# 0000 # * Self Test Question 10-3
# 0000 # * Addition to subroutine.jas to
# 0000 # * count the number of chars printed by putchar
# 0000 #
# 0000 # * Memory mapped I/O
# 0000 # ODR EQU $E2 * } definitions
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# 0000 # OSR EQU $E3 * }
# 0000 #

ORG $0000 # 0000 # ORG 0 * load program in memory at addr 0
A6D0 # 0000 # MOVE #$D0,SP * initialize the stack pointer

# 0001 #
9000 # 0001 # MOVE #$00,A * } set the putchar counter to 0
A21A # 0002 # MOVE A,count * }

# 0003 #
911B # 0003 # MOVE #data,B * point at data
9800 # 0004 # next MOVE (B),A * get a character
8000 # 0005 # CMP #$0,A * is this the terminator?
C30A # 0006 # BEQ done * yes - stop
D00C # 0007 # JSR putchar * call the print sub-routine
0101 # 0008 # ADD #$1,B * increment data address
E004 # 0009 # JMP next * repeat loop
921A # 000A # done MOVE count,A * finally, store count in A
F000 # 000B # HALT * halt the program

# 000C #
# 000C # *
# 000C # * putchar routine (char in lo-byte of A)
# 000C # *

8D00 # 000C # putchar PUSH B * save B on the stack
93E3 # 000D # _putch1 MOVE OSR,B * move OSR to B
8100 # 000E # CMP #$00,B * can we print ?
C30D # 000F # BEQ _putch1 * if not, grab OSR again
A2E2 # 0010 # MOVE A,ODR * otherwise print lo-byte of A
D014 # 0011 # JSR counter * increate the putchar count
8F00 # 0012 # POP B * retrieve B from the stack
F100 # 0013 # RTS * return from subroutine

# 0014 #
8C00 # 0014 # counter PUSH A * save A on the stack
921A # 0015 # MOVE count,A * }
0001 # 0016 # ADD #$01,A * } count = count + 1
A21A # 0017 # MOVE A,count * }
8E00 # 0018 # POP A * restore A from the stack
F100 # 0019 # RTS

# 001A #
0000 # 001A # count DS.W 1 * storage for the putchar count

# 001B #
# 001B # * data string
# 001B # * (stored as unpacked ASCII)

0048 # 001B # data DC.W 0048 * H
0065 # 001C # DC.W 0065 * e
006C # 001D # DC.W 006C * l
006C # 001E # DC.W 006C * l
006F # 001F # DC.W 006F * o
0020 # 0020 # DC.W 0020 *
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0057 # 0021 # DC.W 0057 * W
006F # 0022 # DC.W 006F * o
0072 # 0023 # DC.W 0072 * r
006C # 0024 # DC.W 006C * l
0064 # 0025 # DC.W 0064 * d
0021 # 0026 # DC.W 0021 * !
000D # 0027 # DC.W 000D * <cr>
000A # 0028 # DC.W 000A * <lf>
0000 # 0029 # DC.W 0000 * Terminator

G.11 Answers To Chapter 11
1 Here is the revised program:

# 0000 # * Self Test Question 11-1
# 0000 # * This is a modification of reverse.jas to use
# 0000 # * relative addressing with the JMP instructions
# 0000 # *

ORG $0000 # 0000 # ORG 0 * load program in memory at
# 0000 # * location 0

A6D0 # 0000 # MOVE #$D0,SP * initialize the stack pointer
# 0001 #

9000 # 0001 # MOVE #$00,A * push 0 onto the stack, we can use
8C00 # 0002 # PUSH A * this later to show us we’ve

# 0003 # * finished popping values
# 0003 #

9012 # 0003 # MOVE #list,A * A contains the address of the 1st.
# 0004 # * list element
# 0004 #

9900 # 0004 # pushloop MOVE (A),B * move the first element into B
8100 # 0005 # CMP #$0,B * } if the number is 0 we have gone

# 0006 # * } through the list
C30A # 0006 # BEQ end_push * }
8D00 # 0007 # PUSH B * otherwise push the value on to the

# 0008 # * stack
0001 # 0008 # ADD #$01,A * get next list element
E8FA # 0009 # JMP #pushloop * and run the loop again

# 000A #
9012 # 000A # end_push MOVE #list,A * A contains the address of the 1st.

# 000B # * list element
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8F00 # 000B # poploop POP B * get the element from the stack
8100 # 000C # CMP #$0,B * if the number is 0 we have gone

# 000D # * through the list
C311 # 000D # BEQ end_pop * so we need to end the loop
A900 # 000E # MOVE B,(A) * otherwise, write the popped value

# 000F # * to memory
0001 # 000F # ADD #$01,A * get to next list element
E8FA # 0010 # JMP #poploop * and run the loop again
F000 # 0011 # end_pop HALT * stop the program on completion

# 0012 #
# 0012 # * the list values

1234 # 0012 # list DC.W 1234
2345 # 0013 # DC.W 2345
3456 # 0014 # DC.W 3456
4567 # 0015 # DC.W 4567
5678 # 0016 # DC.W 5678
0000 # 0017 # DC.W 0000

2 Here is one possible solution:

# 0000 # * Self Test Question 11-2
# 0000 # * A program to add $12D5 to $073A
# 0000 # *
# 0000 # *

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0

9210 # 0000 # MOVE num1,A * A = num1
9311 # 0001 # MOVE num2,B * B = num2
0600 # 0002 # ADD B,A * A = A + B
F000 # 0003 # HALT * stop the program on completion

# 0004 # * result is in A
ORG $0010 # 0010 # ORG $10
12D5 # 0010 # num1 DC.W $12D5
073A # 0011 # num2 DC.W $073A

You can use memory direct addressing (as used above) to load the values
into registers. You could also have used indirect addressing.

3 Here is one possible solution:
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# 0000 # * Self Test Question 11-3
# 0000 # * A program to add a sequence of values, using
# 0000 # * register indexed addressing to access the values.
# 0000 # *

ORG $0000 # 0000 # ORG 0 * load program in memory starting
# 0000 # * at location 0

A6D0 # 0000 # MOVE #$D0,SP * initialise the stack pointer
9000 # 0001 # MOVE #$00,A * } initialise storage
A215 # 0002 # MOVE A,result * } for the result

# 0003 #
9A0F # 0003 # addlist MOVE B+list,A * access the list entry indexed

# 0004 # * by B
8000 # 0004 # CMP #$00,A * check if the list entry is zero
C30D # 0005 # BEQ done * and if it is terminate the

# 0006 # * program
# 0006 #

8D00 # 0006 # PUSH B * save B on the stack
9315 # 0007 # MOVE result,B * }
0700 # 0008 # ADD A,B * } result = result + A
A315 # 0009 # MOVE B,result * }
8F00 # 000A # POP B * restore B from the stack

# 000B #
0101 # 000B # ADD #$01,B * increment the index
E003 # 000C # JMP addlist * loop again

# 000D #
9215 # 000D # done MOVE result,A * store the result in A
F000 # 000E # HALT * stop the program on completion

# 000F # * result is in A
# 000F #

0023 # 000F # list DC.W $0023 * the list of values to add
0045 # 0010 # DC.W $0045
01D2 # 0011 # DC.W $01D2
02F0 # 0012 # DC.W $02F0
00D2 # 0013 # DC.W $00D2
0000 # 0014 # DC.W $0000 * terminator

# 0015 #
0000 # 0015 # result DS.W 1

G.12 Answers To Chapter 12
1 Here is one possible solution:
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# 0000 # * Self Test Question 12-1
# 0000 # * This program reads 10 characters from the keyboard
# 0000 # * and then prints them all out once they’ve been entered,
# 0000 # * with a space character between between all characters.
# 0000 # *
# 0000 # OSR EQU $E3 * Output Status Register (OSR)
# 0000 # ODR EQU $E2 * Output Data Register (ODR)
# 0000 # ISR EQU $E1 * Input Status Register (ISR)
# 0000 # IDR EQU $E0 * Input Data Register (IDR)
# 0000 #

ORG $0000 # 0000 # ORG 0
9100 # 0000 # MOVE #$00,B * count is storage for our
A324 # 0001 # MOVE B,count * counter value

# 0002 #
92E1 # 0002 # loop MOVE ISR,A * Get ISR
8000 # 0003 # CMP #$00,A * is a char available?
C302 # 0004 # BEQ loop * no - wait some more
92E0 # 0005 # MOVE IDR,A * read the char

# 0006 #
9324 # 0006 # MOVE count,B * the address to write the
0125 # 0007 # ADD #data,B * value to is count+data
A800 # 0008 # MOVE A,(B) * write the char in there

# 0009 #
9324 # 0009 # MOVE count,B * add 1 to count
0101 # 000A # ADD #$01,B *
810A # 000B # CMP #$0A,B * and see if we have reached 10
C30F # 000C # BEQ gotchars * move to next section if we have
A324 # 000D # MOVE B,count * otherwise write count back
E002 # 000E # JMP loop * and get another char
9100 # 000F # gotchars MOVE #$00,B * count is storage for our
A324 # 0010 # MOVE B,count * counter value

# 0011 #
92E3 # 0011 # write MOVE OSR,A * get OSR
8000 # 0012 # CMP #$00,A * OSR 1 can print, OSR 0 can’t print
C311 # 0013 # BEQ write * not yet, wait some more

# 0014 #
9324 # 0014 # MOVE count,B * the address to read the
0125 # 0015 # ADD #data,B * value from is count+data
9800 # 0016 # MOVE (B),A * get the char in there
A2E2 # 0017 # MOVE A,ODR * print the char

# 0018 #
92E3 # 0018 # writesp MOVE OSR,A * get OSR
8000 # 0019 # CMP #$00,A * OSR 1 can print, OSR 0 can’t print
C318 # 001A # BEQ writesp * not yet, wait some more

# 001B #
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9020 # 001B # MOVE #$20,A * } print a space
A2E2 # 001C # MOVE A,ODR * } character

# 001D #
9324 # 001D # MOVE count,B * add 1 to count
0101 # 001E # ADD #$01,B *
810A # 001F # CMP #$0A,B * and see if we have reached 10
C323 # 0020 # BEQ done * and move to end if we have
A324 # 0021 # MOVE B,count * otherwise write count back
E011 # 0022 # JMP write * and write another char
F000 # 0023 # done HALT * done

# 0024 #
0000 # 0024 # count DS.W $01 * the counter
0000 # 0025 # data DS.W $0A * storage for our 10 characters
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #
0000 # #

2 Here is one possible solution, note that no checking is done to see if the
input character is a lowercase character:

# 0000 # * Self Test Question 12-2
# 0000 # * This program reads lowercase characters from the
# 0000 # * keyboard, and then converts them to uppercase prior
# 0000 # * to printing them. No checking is done on the input
# 0000 # * characters.
# 0000 # *
# 0000 # OSR EQU $E3 * Output Status Register (OSR)
# 0000 # ODR EQU $E2 * Output Data Register (ODR)
# 0000 # ISR EQU $E1 * Input Status Register (ISR)
# 0000 # IDR EQU $E0 * Input Data Register (IDR)
# 0000 #

ORG $0000 # 0000 # ORG 0
92E1 # 0000 # loop MOVE ISR,A * Get ISR
8000 # 0001 # CMP #$00,A * is a char available?
C300 # 0002 # BEQ loop * no - wait some more
93E0 # 0003 # MOVE IDR,B * read the char into B
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8120 # 0004 # CMP #$20,B * was it a space character?
C30C # 0005 # BEQ done * yes, so finish
2120 # 0006 # SUB #$20,B * convert the character

# 0007 #
92E3 # 0007 # write MOVE OSR,A * get OSR
8000 # 0008 # CMP #$00,A * OSR 1 can print, OSR 0 can’t print
C307 # 0009 # BEQ write * not yet, wait some more
A3E2 # 000A # MOVE B,ODR * print the char
E000 # 000B # JMP loop * and get another char
F000 # 000C # done HALT * halt the program

3 Here is one possible solution:

# 0000 # * Self Test Question 12-3
# 0000 # * This program reads a characters from the
# 0000 # * keyboard that should be a digit (no checking is done),
# 0000 # * a corresponding number of asterisks is printed.
# 0000 # *
# 0000 # OSR EQU $E3 * Output Status Register (OSR)
# 0000 # ODR EQU $E2 * Output Data Register (ODR)
# 0000 # ISR EQU $E1 * Input Status Register (ISR)
# 0000 # IDR EQU $E0 * Input Data Register (IDR)
# 0000 #

ORG $0000 # 0000 # ORG 0
92E1 # 0000 # input MOVE ISR,A * Get ISR
8000 # 0001 # CMP #$00,A * is a char available?
C300 # 0002 # BEQ input * no - wait some more
92E0 # 0003 # MOVE IDR,A * read the char into A
2030 # 0004 # SUB #$30,A * number of asterisks to print is

# 0005 # * now in A
8000 # 0005 # loop CMP #$00,A * if the number is now 0
C310 # 0006 # BEQ done * then finish
2001 # 0007 # SUB #$01,A * decrement the count
8C00 # 0008 # PUSH A * save A on the stack
92E3 # 0009 # write MOVE OSR,A * get OSR
8000 # 000A # CMP #$00,A * OSR 1 can print, OSR 0 can’t print
C309 # 000B # BEQ write * not yet, wait some more
912A # 000C # MOVE #$2A,B * } print the * character
A3E2 # 000D # MOVE B,ODR * }
8E00 # 000E # POP A * restore A from the stack
E005 # 000F # JMP loop * see if we want to print more
F000 # 0010 # done HALT * halt the program
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G.13 Answers To Chapter 13
1 The program only prints dot characters, as an interrupt is never triggered

and therefore the subroutine to display the time is never called.

2 Simply set the timer to trigger an interrupt every three seconds by updating
the timer initialization to be like this:

9005 # 0002 # MOVE #$05,A *
A2EE # 0003 # MOVE A,TIMER * initialize timer with 5 secs

3 Here is one possible solution:

# 0000 # * Self Test Question 13-3
# 0000 # * Uses a TRAP call to access the subroutine.
# 0000 #
# 0000 # ODR EQU $E2 *
# 0000 # OSR EQU $E3 *
# 0000 #

ORG $00F0 # 00F0 # ORG $F0 * } set up vector table
0011 # 00F0 # DC.W #handler * }

# 00F1 #
ORG $0000 # 0000 # ORG 0 * load program in memory at

# 0000 # * location 0
F300 # 0000 # INTE * enable interrupts
A6D0 # 0001 # MOVE #$D0,SP * initialize the stack pointer

# 0002 #
9113 # 0002 # MOVE #data,B * point at data
9800 # 0003 # next MOVE (B),A * get a character
8000 # 0004 # CMP #$0,A * is this the terminator?
C309 # 0005 # BEQ done * yes - stop
FA00 # 0006 # TRAP #$0 * trigger the level 0 interrupt
0101 # 0007 # ADD #$1,B * increment data address
E003 # 0008 # JMP next * repeat loop
F000 # 0009 # done HALT * halt the program

# 000A #
# 000A # *
# 000A # * putchar routine (char in lo-byte of A)
# 000A # *

8D00 # 000A # putchar PUSH B * save B on the stack
93E3 # 000B # _putch1 MOVE OSR,B * move OSR to B
8100 # 000C # CMP #$00,B * can we print ?
C30B # 000D # BEQ _putch1 * if not, grab OSR again
A2E2 # 000E # MOVE A,ODR * otherwise print lo-byte of A
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8F00 # 000F # POP B * retrieve B from the stack
F100 # 0010 # RTS * return from subroutine

# 0011 #
# 0011 # * wrapper for trap 0

D00A # 0011 # handler JSR putchar * all we do is call the subroutine
FF00 # 0012 # RTI * return from interrupt

# 0013 #
# 0013 # * data string
# 0013 # * (stored as unpacked ASCII)

0048 # 0013 # data DC.W 0048 * H
0065 # 0014 # DC.W 0065 * e
006C # 0015 # DC.W 006C * l
006C # 0016 # DC.W 006C * l
006F # 0017 # DC.W 006F * o
0020 # 0018 # DC.W 0020 *
0057 # 0019 # DC.W 0057 * W
006F # 001A # DC.W 006F * o
0072 # 001B # DC.W 0072 * r
006C # 001C # DC.W 006C * l
0064 # 001D # DC.W 0064 * d
0021 # 001E # DC.W 0021 * !
000D # 001F # DC.W 000D * <cr>
000A # 0020 # DC.W 000A * <lf>
0000 # 0021 # DC.W 0000 * Terminator

G.14 Answers To Chapter 14
1 Once re-assembled to be loaded into memory from location $0010, all

operands that refer to a memory location will have been updated. The
program will run successfully from this new location.

2 Provided that you have successfully installed the JASP tools (see appendix
A for details), then the following commands will create the machine code
program that can then be executed in JASPer (use the advanced instruction
set):

jcc < add.c-- > add.asm
jasm -a add.asm -o add.jas

3 Once the source program has been modified, you need to execute the
same commands as listed above. On executing the program in JASPer (re-
member to use the advanced instruction set), you will see the new result
displayed.

4 Here is the assembly language program of one possible solution:

469



www.manaraa.com

Fundamentals of Computer Architecture

* Self Test Question 14-4
* Displays the time in hexadecimal

SECS EQU $E8
MINS EQU $E9
HOURS EQU $EA

ORG $0

MOVE #$D0,SP * initialise stack pointer ($D0)

MOVE #time,A * move address of time string to A
JSR putstring * jump to sub-routine putstring

* (packed string)

MOVE HOURS,A * move hours value into A
JSR putbyte * jump to sub-routine putbyte

MOVE #$3a,B * move a ’:’ into B
JSR putchar * jump to sub-routine putchar

MOVE MINS,A * move mins value into A
JSR putbyte * jump to sub-routine putbyte

MOVE #complete,A * move address of complete string to A
JSR putstring * jump to putstring routine
HALT * finished

USE "basicio.lib"

time DC.B ’The time is now ’,0

complete DC.B ’\n’,0

5 Here is the assembly language program of one possible solution:

* Self Test Question 14-5
* Takes a name from the user and prints it out.

SECS EQU $E8
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MINS EQU $E9
HOURS EQU $EA

maxstring EQU $0A * maximum string size is 10 chars

ORG $0 * set origin to 0
MOVE #$D0,SP * initialize stack pointer ($D0)

MOVE #enter,A * } print
JSR putstring * } ’Enter your name : ’

MOVE #namestore,A * place address of namestore into A

MOVE #maxstring,B * } initialize the char counter
MOVE B,count * } with maxstring

name_get
PUSH A * store A on the stack
JSR getchar * get the char in A
MOVE A,B * } move it to B
JSR putchar * } and print it
POP A * restore A from the stack
CMP #$0D,B * see if is a CR
BEQ name_done * if it then the name is entered
MOVE B,(A) * store the char
ADD #$01,A * and index the storage
MOVE count,B * }
SUB #$01,B * } count = count - 1
MOVE B,count * }
CMP #$00,B * if we have hit the limit then
BEQ name_done * the name is entered
JMP name_get * otherwise get more chars

name_done MOVE #cr,A * } print ’\n’
JSR putstring * }
MOVE #$00,B * } add the terminator to the
MOVE B,(A) * } name string

MOVE #hello,A * } print ’Hello ’
JSR putstring * }
MOVE #namestore,A * } print name
JSR putustring * }
MOVE #exclaim,A * } print ’!\n’
JSR putstring * }

HALT * stop the program

* print unpacked string, assume start location in A

471



www.manaraa.com

Fundamentals of Computer Architecture

putustring MOVE (A),B * get a character
CMP #$0,B * is this the terminator?
BEQ _pus_done * yes - stop
JSR putchar * otherwise print the character
ADD #$1,A * increment data address
JMP putustring * repeat

_pus_done RTS * return from subroutine

* include the basic library
USE "basicio.lib"

count DS.W 1 * keeps track of number of chars
namestore DS.W $0B * store for 10 chars + null terminator

enter DC.B ’Enter your name : ’,0
hello DC.B ’Hello ’,0
exclaim DC.B ’!\n’,0
cr DC.B ’\n’,0

G.15 Answers To Chapter 16
1 Here is the instruction definition:

Opcode f6
Mnemonic "MOVE -A,B"
Description "MOVE A to B, pre-decrement A"
ALUx<-[A] * }
ALUr=[ALUx]-1 * } A = A-1
A<-[ALUr] * }
MDR<-[A] * } B = A
B<-[MDR] * }

2 Here is the test program:

# 0000 # * Self Test Question 16-2

472



www.manaraa.com

Answers To Self Test Exercises

# 0000 # * A program to use our new instruction MOVE -A,B
# 0000 #

ORG $0000 # 0000 # ORG 0
9005 # 0000 # MOVE #$05,A * initialize A with 5
9100 # 0001 # MOVE #$00,B * initialize B with 0
F600 # 0002 # MOVE -A,B * test our new instruction
F000 # 0003 # HALT * program complete

3 Here is the instruction definition:

Opcode f6
Mnemonic "MOVW #dataword,A"
Description "MOVW 16-bit word into A register"
MAR<-[PC] * address of dataword now in MAR
INC<-[PC] * } update PC for next fetch
PC<-[INC] * }
MDR<-[M[MAR]] * dataword now in MDR
A<-[MDR] * dataword now in A

4 Here is the test program:

# 0000 # * Self Test Question 16-4
# 0000 # * A program to use our new instruction MOVE #dataword,B
# 0000 #

ORG $0000 # 0000 # ORG 0
F600 # 0000 # MOVW #$1234,A * initialize A
1234 # #
F000 # 0002 # HALT * program complete

G.16 Answers To Chapter 17
1 These are the micro-instructions executed by POP A:

� ALUx←[SP ]
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� ALUr = [ALUx] + 1
� SP←[ALUr]
� MAR←[SP ]
� MDR←[M [MAR]]
� A←[MDR]
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Don’t worry if you didn’t fill in the fields for the ALU data bus lines - the
definition of how these lines are used is in appendix A.

2 These are the micro-instructions executed by AND addr,A:

� MAR←[IR(operand)]
� MDR←[M [MAR]]
� ALUy←[MDR]
� ALUx←[A]
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� A←[ALUr]

R
/W

Step Register Clock

M
A

R

M
D

R

A B A
LU

x

A
LU

y

A
LU

r

IRS
P

IN
C

P
C

M
A

R

M
D

R

A B A
LU

x

A
LU

y

A
LU

r

IRS
P

IN
C

P
C

Register Output Enable

1
2
3
4
5
6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

000000000000 0 0 0000

M
em

or
y

C
S A

LU
 C

on
tr

ol
Li

ne
s

A
LU

 D
at

a
B

us
 L

in
es

0 0 0 0 0
00

0 0 0 0
000

0 0 0 0
00000

Micro-instruction

MAR [IR(operand)]

ALUy [MDR]
ALUx [A]

A [ALUr]

0
0

0
0

0
0

0
0

0
0

0 0

0
0 0 MDR [M[MAR]]

ALUr   = [ALUx]&[ALUy]

0

0
0

0

0 0
0

0
0

0 0

0
0 0

0
0
0

0
0

1
1

1
1

1

1
1 1 1

1
1

1
1 1

1 1

1
1

474



www.manaraa.com

Bibliography

[Aga01] Jon Agar. Turing And The Universal Machine. Icon Books, 2001.

[BO03] Randal Bryant and David O’Halloran. Computer Systems: A
Programmer’s Perspective. Prentice Hall, 2003.

[CCW02] Sebastian Coope, John Cowley, and Neil Willis. Computer Systems:
Architecture, Networks And Communications. McGraw Hill, 2002.

[Cha96] B. S. Chalk. Computer Organisation And Architecture: An Introduc-
tion. Palgrave, 1996.

[Cle00] Alan Clements. The Principles of Computer Hardware. Oxford
University Press, 3rd edition, 2000.

[com02] A Glossary Of Computing Terms. Addison Wesley, 10th edition,
2002.

[Cri01] John Crisp. Introduction To Microprocessors. Newnes, 2001.

[Fey86] Richard Feynman. Surely You’re Joking, Mr. Feynman. Unwin
Paperbacks, 1986.

[Fey87] Richard Feynman. What Do You Care What Other People Think?
Unwin Paperbacks, 1987.

[Fey99] Richard Feynman. Lectures On Computation. Penguin, 1999.

[Gib84] J. R. Gibson. Electronic Logic Circuits. Arnold, 2nd edition, 1984.

[Hod92] Andrew Hodges. Alan Turing: The Enigma. Vintage, 1992.

[HP02] John Hennessy and David Patterson. Computer Architecture.
Morgan Kaufmann Publishers Inc, 3rd edition, 2002.

[HVZ02] Carl Hamacher, Zvonko Vranesic, and Safwat Zaky. Computer
Organization. McGraw Hill, 5th edition, 2002.

[Kur92] Raymond Kurzweil. The Age Of Intelligent Machines. MIT Press,
1st edition, 1992.

[Lev94] Steven Levy. Hackers: Heroes Of The Revolution. Penguin, 1994.

[MH00] Miles Murdoca and Vincent Heuring. Principles Of Computer
Architecture. Prentice Hall, 2000.

[NG99] Peter Norton and John Goodman. Inside The PC. SAMS, 8th
edition, 1999.

475



www.manaraa.com

Fundamentals of Computer Architecture

[O’G00] John O’Gorman. Operating Systems. MacMillan Press, 2000.

[PH98] David Patterson and John Hennessy. Computer Organization and
Design. Morgan Kaufmann Publishers Inc, 2nd edition, 1998.

[Pou92] William Poundstone. Prisoner’s Dilemma. Oxford University Press,
1992.
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